scholarly journals Sulfidation mechanisms of Fe(iii)-(oxyhydr)oxide nanoparticles: a spectroscopic study

2018 ◽  
Vol 5 (4) ◽  
pp. 1012-1026 ◽  
Author(s):  
Naresh Kumar ◽  
Juan Lezama Pacheco ◽  
Vincent Noël ◽  
Gabrielle Dublet ◽  
Gordon E. Brown

We used synchrotron-based X-ray absorption spectroscopy, transmission electron microscopy, and wet chemical analyses to study the sulfidation mechanism(s) and sulfur oxidation products from the reaction of ferrihydrite, goethite, and hematite nanoparticles with dissolved sulfide at different S/Fe molar ratios under anaerobic condition.

1998 ◽  
Vol 536 ◽  
Author(s):  
A. L. Rogach ◽  
A Eychmüller ◽  
J. Rockenberger ◽  
A. Kornowski ◽  
H. Weller ◽  
...  

AbstractCdSe and CdTe nanoclusters were formed in aqueous solutions at moderate temperatures by a wet chemical route in the presence of thiols as effective stabilizing agents. The nature of the stabilizing agent (thioalcohols or thioacids) had an important influence on the particle size and largely determined the photoluminescence properties. The nanoclusters were characterized by means of UV-vis absorption and photoluminescence spectroscopy, powder X-ray diffraction, high resolution transmission electron microscopy, and extended X-ray absorption fine structure measurements. CdSe and CdTe nanoclusters were crystalline, in the cubic zincblende phase, with mean sizes in the range of 2 to 5 nm depending on the preparative conditions and the postpreparative size-selective fractionation, and showed pronounced electronic transitions in the absorption spectra. Thioglycerol-stabilized CdTe nanoclusters possessed sharp band-egde photoluminescence being tunable with particle size.


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Selvakumar Dhanasingh ◽  
Dharmaraj Nallasamy ◽  
Saravanan Padmanapan ◽  
Vinod Padaki

AbstractThe influence of cetyltrimethylammonium bromide and ethylene glycol on the size and dispersion of indium oxide nanoparticles prepared under hydrothermal conditions was investigated. The precursor compound, indium hydroxide, obtained by the hydrothermal method in the absence as well as the presence of cetyltrimethylammonium bromide, was converted to indium oxide by sintering at 400°C. The formation of nanoscale indium oxide upon sintering was ascertained by the characteristic infrared adsorption bands and X-ray diffraction patterns of indium oxide. Transmission electron microscopy and band gap values confirmed that the cetyltrimethylammonium bromide facilitated the formation of indium oxide nanoparticles smaller in size and narrower in distribution than those prepared without the assistance of cetyltrimethylammonium bromide.


2017 ◽  
Vol 8 ◽  
pp. 1257-1265 ◽  
Author(s):  
Urszula Klekotka ◽  
Magdalena Rogowska ◽  
Dariusz Satuła ◽  
Beata Kalska-Szostko

Ferrite nanoparticles with nominal composition Me0.5Fe2.5O4 (Me = Co, Fe, Ni or Mn) have been successfully prepared by the wet chemical method. The obtained particles have a mean diameter of 11–16 ± 2 nm and were modified to improve their magnetic properties and chemical activity. The surface of the pristine nanoparticles was functionalized afterwards with –COOH and –NH2 groups to obtain a bioactive layer. To achieve our goal, two different modification approaches were realized. In the first one, glutaraldehyde was attached to the nanoparticles as a linker. In the second one, direct bonding of such nanoparticles with a bioparticle was studied. In subsequent steps, the nanoparticles were immobilized with enzymes such as albumin, glucose oxidase, lipase and trypsin as a test bioparticles. The characterization of the nanoparticles was acheived by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray and Mössbauer spectroscopy. The effect of the obtained biocomposites was monitored by Fourier transform infrared spectroscopy. The obtained results show that in some cases the use of glutaraldehyde was crucial (albumin).


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 800
Author(s):  
Vladimír Girman ◽  
Maksym Lisnichuk ◽  
Daria Yudina ◽  
Miloš Matvija ◽  
Pavol Sovák ◽  
...  

In the present study, the effect of wet mechanical alloying (MA) on the glass-forming ability (GFA) of Co43Fe20X5.5B31.5 (X = Ta, W) alloys was studied. The structural evolution during MA was investigated using high-energy X-ray diffraction, X-ray absorption spectroscopy, high-resolution transmission electron microscopy and magnetic measurements. Pair distribution function and extended X-ray absorption fine structure spectroscopy were used to characterize local atomic structure at various stages of MA. Besides structural changes, the magnetic properties of both compositions were investigated employing a vibrating sample magnetometer and thermomagnetic measurements. It was shown that using hexane as a process control agent during wet MA resulted in the formation of fully amorphous Co-Fe-Ta-B powder material at a shorter milling time (100 h) as compared to dry MA. It has also been shown that substituting Ta with W effectively suppresses GFA. After 100 h of MA of Co-Fe-W-B mixture, a nanocomposite material consisting of amorphous and nanocrystalline bcc-W phase was synthesized.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


Clay Minerals ◽  
1983 ◽  
Vol 18 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. A. Eggleton ◽  
J. H. Pennington ◽  
R. S. Freeman ◽  
I. M. Threadgold

AbstractTransmission electron microscopy, X-ray radial distribution function analysis, chemical analysis, X-ray absorption edge spectroscopy, and Mössbauer spectroscopy combine to confirm an amorphous or gel structure for minerals of the hisingerite-neotocite series: (Fe,Mn)0.8SiO3.1.2H2O. A framework of (Fe,Mn)O6 octahedra and [SiO4] tetrahedra form hollow spheres, 50–100 Å in diameter, cross-bonded into a physically isotropic solid with as much as 10% interconnected pore space. The outer 10–20 Å of the spheres has a rudimentary structure, possibly marking the onset of segregation into Si-rich and (Fe,Mn)-rich layers. The Broken Hill mineral ‘sturtite’ is an intermediate member of the hisingerite-neotocite series.


2020 ◽  
Author(s):  
Yuta Uetake ◽  
Sachi Mouri ◽  
Setsiri Haesuwannakij ◽  
Kazu Okumura ◽  
Hidehiro Sakurai

<div>Although changing the size of metal nanoparticle (NP) is a reasonable way to tune and/or enhance their catalytic activity, size-selective preparation of NP possessing random-alloy morphology has been challenging because of the differences in the ionization potential of each metal ion. This study demonstrates a time-controlled aggregation–stabilization method for a size-selective preparation of random alloy NPs composed of Au and Pd, which are stabilized by poly(<i>N</i>-vinyl-2-pyrrolidone) (PVP). By adjusting the mixing time in the presence of a small amount of PVP, the aggregation was induced to produce AuPd:PVP with sizes ranging between 1.2 and 8.2 nm at approximately 1 nm intervals. Transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and extended x-ray absorption fine structure (EXAFS) analyses clearly indicated the formation of various sizes of AuPd nanoalloys with almost the same morphology, and size-dependent catalytic activity was observed when hydrodechlorination of 4-choroanisole was performed using 2-propanol as a reducing agent. AuPd:PVP with a size of 3.1 nm exhibited the highest catalytic activity. A comparison of the absorption edges on x-ray absorption near edge structure (XANES) spectra suggested that the electronic state of the Au and Pd species correlated with their catalytic activity, presumably affecting the rate-determining step.</div><div> </div>


2000 ◽  
Vol 658 ◽  
Author(s):  
A. Manthiram ◽  
R. V. Chebiam ◽  
F. Prado

ABSTRACTLayered Co1-yNiyO2-δ oxides with 0≤y≤1 have been synthesized by chemically extracting lithium from LiNi1-yCoyO2 with NO2PF6 at ambient temperature. The samples have been characterized by X-ray diffraction, wet-chemical analyses, infrared spectroscopy, and magnetic susceptibility measurements. While NiO2-δ retains the initial O3 (CdCl2 structure) layer structure of LiNiO2, CoO2-δ consists of a mixture of P3 and O1 (CdI2 structure) phases that are formed by a sliding of the oxide ions in the initial O3 structure. CoO2-δ and NiO2-δ have oxygen contents of, respectively, 1.67 and 1.95 and the oxygen content increases with increasing Ni content, y, in Co1-yNiyO2-δ. While CoO2-δ exhibits metallic conductivity as revealed by theabsence of absorption bands in the infrared spectrum, NiO2-δ exhibits semiconducting behavior due to a completely filled t2g band. Magnetic data reveal a transition from antiferromagnetic to ferromagnetic correlations as the Ni content in Co1-yNiyO2-δ increases.


Sign in / Sign up

Export Citation Format

Share Document