scholarly journals A multiscale study of the role of dynamin in the regulation of glucose uptake

2017 ◽  
Vol 9 (10) ◽  
pp. 810-819 ◽  
Author(s):  
Raphaël Trouillon ◽  
M. Cristina Letizia ◽  
Keir J. Menzies ◽  
Laurent Mouchiroud ◽  
Johan Auwerx ◽  
...  

Cells- and organisms-on-a-chip strategies were used to highlight the role of the molecular motor dynamin in regulating the translocation of specific glucose transporters.

2012 ◽  
Vol 303 (5) ◽  
pp. F766-F774 ◽  
Author(s):  
Rekha Yesudas ◽  
Russell Snyder ◽  
Thomas Abbruscato ◽  
Thomas Thekkumkara

Previously, we have demonstrated human angiotensin type 1 receptor (hAT1R) promoter architecture with regard to the effect of high glucose (25 mM)-mediated transcriptional repression in human proximal tubule epithelial cells (hPTEC; Thomas BE, Thekkumkara TJ. Mol Biol Cell 15: 4347–4355, 2004). In the present study, we investigated the role of glucose transporters in high glucose-mediated hAT1R repression in primary hPTEC. Cells were exposed to normal glucose (5.5 mM) and high glucose (25 mM), followed by determination of hyperglycemia-mediated changes in receptor expression and glucose transporter activity. Exposure of cells to high glucose resulted in downregulation of ANG II binding (4,034 ± 163.3 to 1,360 ± 154.3 dpm/mg protein) and hAT1R mRNA expression (reduced 60.6 ± 4.643%) at 48 h. Under similar conditions, we observed a significant increase in glucose uptake (influx) in cells exposed to hyperglycemia. Our data indicated that the magnitude of glucose influx is concentration and time dependent. In euglycemic cells, inhibiting sodium-glucose cotransporters (SGLTs) with phlorizin and facilitative glucose transporters (GLUTs) with phloretin decreased glucose influx by 28.57 ± 0.9123 and 54.33 ± 1.202%, respectively. However, inhibiting SGLTs in cells under hyperglycemic conditions decreased glucose influx by 53.67 ± 2.906%, while GLUT-mediated glucose uptake remained unaltered (57.67 ± 3.180%). Furthermore, pretreating cells with an SGLT inhibitor reversed high glucose-mediated downregulation of the hAT1R, suggesting an involvement of SGLT in high glucose-mediated hAT1R repression. Our results suggest that in hPTEC, hyperglycemia-induced hAT1R downregulation is largely mediated through SGLT-dependent glucose influx. As ANG II is an important modulator of hPTEC transcellular sodium reabsorption and function, glucose-mediated changes in hAT1R gene expression may participate in the pathogenesis of diabetic renal disease.


2000 ◽  
Vol 84 (3) ◽  
pp. 140-146 ◽  
Author(s):  
Juei-Tang Cheng ◽  
I-Min Liu ◽  
Shi-Ting Yen ◽  
Pei-Chi Chen

1997 ◽  
Vol 272 (4) ◽  
pp. E649-E655 ◽  
Author(s):  
J. Jensen ◽  
R. Aslesen ◽  
J. L. Ivy ◽  
O. Brors

The effects of diet-manipulated variations in muscle glycogen concentration and epinephrine on glucose uptake were studied in epitrochlearis muscles from Wistar rats. Both basal and insulin-stimulated glucose uptake [measured with a tracer amount of 2-[1,2-3H(N)]deoxy-D-glucose] inversely correlated with initial glycogen concentration (glycogen concentration vs. basal glucose uptake: Spearman's rho = -0.76, n = 84, P < 0.000001; glycogen concentration vs. insulin-stimulated glucose uptake: Spearman's rho = -0.67, n = 44, P < 0.00001). Two fasting-refeeding procedures were used that resulted in differences in muscle glycogen concentrations, although with similar treatment for the last 48 h before the experiment. In the rats with the lower glycogen concentration, basal as well as insulin-stimulated glucose uptake was elevated. The muscle glycogen concentration had no effect on epinephrine-stimulated glycogenolysis. Epinephrine, however, was found to reduce basal glucose uptake in all groups. These results suggest that 1) the glycogen concentration participates in the regulation of both basal and insulin-stimulated glucose uptake in skeletal muscle, 2) the magnitude of epinephrine-stimulated glycogen breakdown is independent of the glycogen concentration, and 3) epinephrine inhibits basal glucose uptake at all glycogen concentrations.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
S. H. Shahruzaman ◽  
M. F. Mustafa ◽  
S. Ramli ◽  
S. Maniam ◽  
S. Fakurazi ◽  
...  

Breast cancer is the leading cause of cancer death in women in over 100 countries worldwide and accounts for almost 1 in 4 cancer cases among women. Baeckea frutescens of the family Myrtaceae has been used in traditional medicine and is known to possess antibacterial, antipyretic, and cytoprotective properties. In this study, we investigated the role of Baeckea frutescens branches extracts against human breast cancer cells. Baeckea frutescens branches extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxic activity and the glucose consumption rate of Baeckea frutescens branches extracts of various concentrations (20 to 160 ug/ml) at 24-, 48-, and 72-hour time points were studied using MTT and glucose uptake assay. The IC50 values in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscopy. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening of major secondary metabolites in plants was performed. This study reports that Baeckea frutescens branches extracts showed potent selective cytotoxic activity against MCF-7 cells compared to MDA-MB-231 cells after 72 hours of treatment. Evidence of early apoptosis which includes membrane blebbing and chromatin condensation was observed after 72 hours of treatment with Baeckea frutescens branches extracts. Interestingly, for the glucose uptake assay, the inhibition was observed as early as 24 hours upon treatment. All Baeckea frutescens extracts showed the presence of major secondary metabolites such as tannin, triterpenoid, flavonoid, and phenol. However, alkaloid level was unable to be determined. The identification of Baeckea frutescens and its possible role in selectively inhibiting glucose consumption in breast cancer cells defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.


2014 ◽  
Vol 25 (5) ◽  
pp. 372-378 ◽  
Author(s):  
Clarissa Favero Demeda ◽  
Cyntia Helena Pereira de Carvalho ◽  
Ana Rafaela Luz de Aquino ◽  
Cassiano Francisco Weege Nonaka ◽  
Lélia Batista de Souza ◽  
...  

This study aimed to evaluate the immunoexpression of glucose transporters 1 (GLUT-1) and 3 (GLUT-3) in metastatic and non-metastatic lower lip squamous cell carcinoma (LLSCC). Twenty LLSCCs with regional nodal metastasis and 20 LLSCCs without metastasis were selected. The distribution of staining and the percentage of GLUT-1 and GLUT-3 staining in each tumor core and at the deep invasive front were assessed. Most tumors (70%) exhibited peripheral staining for GLUT-1 in nests, sheets and islands of neoplastic cells, whereas predominantly central staining was observed for GLUT-3 (72.5%). A high percentage of GLUT-1-positive cells was observed at the deep invasive front and in the tumor core of metastatic and non-metastatic tumors (p>0.05). The percentage of GLUT-1-positive cells was much higher than that of GLUT-3-positive cells both in the deep invasive front (p<0.001) and in the tumor core (p<0.001) of LLSCCs. No significant differences in the percentage of GLUT-1- and GLUT-3-positive cells were observed according to nodal metastasis, clinical stage or histological grade of malignancy (p>0.05). In conclusion, the results of the present study suggest an important role of GLUT-1 in glucose uptake in LLSCCs, although this protein does not seem to be involved in the progression of these tumors. On the other hand, GLUT-3 expression may represent a secondary glucose uptake mechanism in LLSCCs.


2019 ◽  
Vol Volume 14 ◽  
pp. 9535-9546 ◽  
Author(s):  
Ahmad Abolhasani ◽  
Davoud Biria ◽  
Hoda Abolhasani ◽  
Ali Zarrabi ◽  
Tahereh Komeili

2019 ◽  
Author(s):  
Mohammad Aziz ◽  
Saeed Al Mahri ◽  
Amal Alghamdi ◽  
Maaged AlAkiel ◽  
Monira Al Aujan ◽  
...  

Abstract Background Colorectal cancer is a worldwide problem which has been associated with changes in diet and lifestyle pattern. As a result of colonic fermentation of dietary fibres, short chain free fatty acids are generated which activate Free Fatty Acid Receptors 2 and 3 (FFAR2 and FFAR3). FFAR2 and FFAR3 genes are abundantly expressed in colonic epithelium and play an important role in the metabolic homeostasis of colonic epithelial cells. Earlier studies point to the involvement of FFAR2 in colorectal carcinogenesis. Methods Transcriptome analysis console was used to analyse microarray data from patients and cell lines. We employed shRNA mediated down regulation of FFAR2 and FFAR3 genes which was assessed using qRT-PCR. Assays for glucose uptake and cAMP generation was done along with immunofluorescence studies. For measuring cell proliferation, we employed real time electrical impedance based assay available from xCelligence. Results Microarray data analysis of colorectal cancer patient samples showed a significant down regulation of FFAR2 gene expression. This prompted us to study the FFAR2 in colorectal cancer. Since, FFAR3 shares significant structural and functional homology with FFAR2, we knocked down both these receptors in colorectal cancer cell line HCT 116. These modified cell lines exhibited higher proliferation rate and were found to have increased glucose uptake as well as increased level of GLUT1. Since, FFAR2 and FFAR3 signal through G protein subunit (Gαi), knockdown of these receptors was associated with increased cAMP. Inhibition of PKA did not alter the growth and proliferation of these cells indicating a mechanism independent of cAMP/PKA pathway. Conclusion: Our results suggest role of FFAR2/FFAR3 genes in increased proliferation of colon cancer cells via enhanced glucose uptake and exclude the role of protein kinase A mediated cAMP signalling. Alternate pathways could be involved that would ultimately result in increased cell proliferation as a result of down regulated FFAR2/FFAR3 genes. This study paves the way to understand the mechanism of action of short chain free fatty acid receptors in colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document