scholarly journals Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems

MedChemComm ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. 2248-2257 ◽  
Author(s):  
Somanath Kundu ◽  
Sandhya Bansal ◽  
Kalai Mangai Muthukumarasamy ◽  
Chetana Sachidanandan ◽  
Rajender K. Motiani ◽  
...  

SAR studies revealed the pro-angiogenic properties of chenodeoxycholic acid in a zebrafish model.

2015 ◽  
Vol 61 (suppl_6) ◽  
pp. S618-S621 ◽  
Author(s):  
Mahmoud Ghannoum ◽  
Emmanuel Roilides ◽  
Aspasia Katragkou ◽  
Vidmantas Petraitis ◽  
Thomas J. Walsh

CHEST Journal ◽  
1985 ◽  
Vol 87 (5) ◽  
pp. 162S-164S ◽  
Author(s):  
Stephen P. Peters ◽  
Robert M. Naclerio ◽  
Alkis Togias ◽  
Robert P. Schleimer ◽  
Donald W. MacGlashan ◽  
...  

Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 8 ◽  
Author(s):  
Mayra Antúnez-Mojica ◽  
Andrés Rojas-Sepúlveda ◽  
Mario Mendieta-Serrano ◽  
Leticia Gonzalez-Maya ◽  
Silvia Marquina ◽  
...  

By using a zebrafish embryo model to guide the chromatographic fractionation of antimitotic secondary metabolites, seven podophyllotoxin-type lignans were isolated from a hydroalcoholic extract obtained from the steam bark of Bursera fagaroides. The compounds were identified as podophyllotoxin (1), β-peltatin-A-methylether (2), 5′-desmethoxy-β-peltatin-A-methylether (3), desmethoxy-yatein (4), desoxypodophyllotoxin (5), burseranin (6), and acetyl podophyllotoxin (7). The biological effects on mitosis, cell migration, and microtubule cytoskeleton remodeling of lignans 1–7 were further evaluated in zebrafish embryos by whole-mount immunolocalization of the mitotic marker phospho-histone H3 and by a tubulin antibody. We found that lignans 1, 2, 4, and 7 induced mitotic arrest, delayed cell migration, and disrupted the microtubule cytoskeleton in zebrafish embryos. Furthermore, microtubule cytoskeleton destabilization was observed also in PC3 cells, except for 7. Therefore, these results demonstrate that the cytotoxic activity of 1, 2, and 4 is mediated by their microtubule-destabilizing activity. In general, the in vivo and in vitro models here used displayed equivalent mitotic effects, which allows us to conclude that the zebrafish model can be a fast and cheap in vivo model that can be used to identify antimitotic natural products through bioassay-guided fractionation.


2013 ◽  
Vol 6 ◽  
pp. LPI.S10871 ◽  
Author(s):  
Paul Toren ◽  
Benjamin C. Mora ◽  
Vasundara Venkateswaran

Obesity has been linked to more aggressive characteristics of several cancers, including breast and prostate cancer. Adipose tissue appears to contribute to paracrine interactions in the tumor microenvironment. In particular, cancer-associated adipocytes interact reciprocally with cancer cells and influence cancer progression. Adipokines secreted from adipocytes likely form a key component of the paracrine signaling in the tumor microenvironment. In vitro coculture models allow for the assessment of specific adipokines in this interaction. Furthermore, micronutrients and macronutrients present in the diet may alter the secretion of adipokines from adipocytes. The effect of dietary fat and specific fatty acids on cancer progression in several in vivo model systems and cancer types is reviewed. The more common approaches of caloric restriction or diet-induced obesity in animal models establish that such dietary changes modulate tumor biology. This review seeks to explore available evidence regarding how diet may modulate tumor characteristics through changes in the role of adipocytes in the tumor microenvironment.


2020 ◽  
Vol 117 (48) ◽  
pp. 30670-30678
Author(s):  
Olivera Grbovic-Huezo ◽  
Kenneth L. Pitter ◽  
Nicolas Lecomte ◽  
Joseph Saglimbeni ◽  
Gokce Askan ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, which limits surgical options and portends a dismal prognosis. Current oncologic PDAC therapies confer marginal benefit and, thus, a significant unmet clinical need exists for new therapeutic strategies. To identify effective PDAC therapies, we leveraged a syngeneic orthotopic PDAC transplant mouse model to perform a large-scale, in vivo screen of 16 single-agent and 41 two-drug targeted therapy combinations in mice. Among 57 drug conditions screened, combined inhibition of heat shock protein (Hsp)-90 and MEK was found to produce robust suppression of tumor growth, leading to an 80% increase in the survival of PDAC-bearing mice with no significant toxicity. Mechanistically, we observed that single-agent MEK inhibition led to compensatory activation of resistance pathways, including components of the PI3K/AKT/mTOR signaling axis, which was overcome with the addition of HSP90 inhibition. The combination of HSP90(i) + MEK(i) was also active in vitro in established human PDAC cell lines and in vivo in patient-derived organoid PDAC transplant models. These findings encourage the clinical development of HSP90(i) + MEK(i) combination therapy and highlight the power of clinically relevant in vivo model systems for identifying cancer therapies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3916-3916
Author(s):  
Olga Dashevsky ◽  
Alexander Brill ◽  
Julia Rivo ◽  
David Varon

Abstract Platelet attachment to the subcellular matrix at injured sites of the vasculature is followed by their activation and release of microparticles. Platelet-derived microparticles (PMP) have been shown to be involved in the regulation of hemostasis. However, little is known about the role of PMP in the regulation of angiogenesis and related clinical conditions. We have recently demonstrated that platelets as a cellular system induce angiogenic responses both in vitro and in vivo. In the present study, we investigated the potential role of PMP in angiogenesis. A strong dose-dependent pro-angiogenic effect of PMP in the rat aortic ring model (5.3±2.1 mm2 surface covered with sprouting vessels versus 0.24±0.2 mm2 in the control, p<0.001) was observed. This effect was reversed by selective inhibition of VEGF, bFGF and PDGF (surface covered with vessels 0.7±0.5 mm2, 1.7±1.5 mm2, and 2.4±1.2 mm2, respectively, p<0.02 versus control), but not by inhibition of heparanase (5.1±0.8 mm2, p>0.5 versus control). PMP exert their stimulatory effect via PI3-kinase, Src kinase and ERK, whereas protein kinase C seems not to be involved, as judged by the aortic ring sprouting model. Using confocal and electron microscopy, we also demonstrate that PMP bind to non-activated endothelial cells. In addition, PMP markedly increased invasion of human endothelial cells through a layer of matrigel. This effect was abolished by an inhibitor of VEGF receptor tyrosine phosphorylation or laminaran sulfate (heparanase inhibitor). It was also partially reduced by PDGF blocking mAb, whereas blocking of bFGF had no effect. Furthermore, we have demonstrated that PMP induce angiogenesis in an in vivo model, in which beads (30 μl) of 4% agarose gel containing the substances under study were transplanted subcutaneously into mice. Image analysis of the capillary area revealed the following: control beads − 0.2±0.05 mm2, VEGF + bFGF containing beads − 4.8±1.1 mm2, PMP (100 μg/ml) containing beads − 5.1±1.3 mm2, p<0.001 versus control. The latter finding was further supported by immunohistochemical staining of the skin in the vicinity of the beads for von Willebrand factor, a marker of endothelial cells (control − 4.0±3.2, VEGF+bFGF − 12±4.4, PMP − 17±6.5 capillaries per view field, p<0.05 versus control). Finally, we explored the potential effect of PMP in a rat myocardial infarction model. Ischemia was induced by LAD ligation followed by injection of either PMP or PBS into the ischemic region. Preliminary evaluation of the LAD myocardial territory in sham-operated animals revealed 157±42.0 capillaries per view field. In contrast, number of capillaries observed 3 weeks after induction of ischemia was reduced to 34±21.5. When PMP were injected into the ischemic region, there was an increase in capillary number up to 97±27.3. In conclusion, PMP induce angiogenesis in both in vitro and in vivo models. Local injection of PMP into the ischemic myocardium may improve revascularization.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4083-4092 ◽  
Author(s):  
Frédéric Adam ◽  
Alexandre Kauskot ◽  
Paquita Nurden ◽  
Eric Sulpice ◽  
Marc F. Hoylaerts ◽  
...  

Abstract The role of c-Jun NH2-terminal kinase 1 (JNK1) in hemostasis and thrombosis remains unclear. We show here, with JNK1-deficient (JNK1−/−) mice, that JNK1 plays an important role in platelet biology and thrombus formation. In tail-bleeding assays, JNK1−/− mice exhibited longer bleeding times than wild-type mice (396 ± 39 seconds vs 245 ± 32 seconds). We also carried out in vitro whole-blood perfusion assays on a collagen matrix under arterial shear conditions. Thrombus formation was significantly reduced for JNK1−/− platelets (51%). In an in vivo model of thrombosis induced by photochemical injury to cecum vessels, occlusion times were 4.3 times longer in JNK1−/− arterioles than in wild-type arterioles. Moreover, in vitro studies carried out in platelet aggregation conditions demonstrated that, at low doses of agonists, platelet secretion was impaired in JNK1−/− platelets, leading to altered integrin αIIbβ3 activation and reduced platelet aggregation, via a mechanism involving protein kinase C. JNK1 thus appears to be essential for platelet secretion in vitro, consistent with its role in thrombus growth in vivo. Finally, we showed that ERK2 and another isoform of JNK affect platelet aggregation through 2 pathways, one dependent and another independent of JNK1.


Sign in / Sign up

Export Citation Format

Share Document