Platelet-Derived Microparticles Induce Angiogenesis and Stimulate Post-Ischemic Revascularization.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3916-3916
Author(s):  
Olga Dashevsky ◽  
Alexander Brill ◽  
Julia Rivo ◽  
David Varon

Abstract Platelet attachment to the subcellular matrix at injured sites of the vasculature is followed by their activation and release of microparticles. Platelet-derived microparticles (PMP) have been shown to be involved in the regulation of hemostasis. However, little is known about the role of PMP in the regulation of angiogenesis and related clinical conditions. We have recently demonstrated that platelets as a cellular system induce angiogenic responses both in vitro and in vivo. In the present study, we investigated the potential role of PMP in angiogenesis. A strong dose-dependent pro-angiogenic effect of PMP in the rat aortic ring model (5.3±2.1 mm2 surface covered with sprouting vessels versus 0.24±0.2 mm2 in the control, p<0.001) was observed. This effect was reversed by selective inhibition of VEGF, bFGF and PDGF (surface covered with vessels 0.7±0.5 mm2, 1.7±1.5 mm2, and 2.4±1.2 mm2, respectively, p<0.02 versus control), but not by inhibition of heparanase (5.1±0.8 mm2, p>0.5 versus control). PMP exert their stimulatory effect via PI3-kinase, Src kinase and ERK, whereas protein kinase C seems not to be involved, as judged by the aortic ring sprouting model. Using confocal and electron microscopy, we also demonstrate that PMP bind to non-activated endothelial cells. In addition, PMP markedly increased invasion of human endothelial cells through a layer of matrigel. This effect was abolished by an inhibitor of VEGF receptor tyrosine phosphorylation or laminaran sulfate (heparanase inhibitor). It was also partially reduced by PDGF blocking mAb, whereas blocking of bFGF had no effect. Furthermore, we have demonstrated that PMP induce angiogenesis in an in vivo model, in which beads (30 μl) of 4% agarose gel containing the substances under study were transplanted subcutaneously into mice. Image analysis of the capillary area revealed the following: control beads − 0.2±0.05 mm2, VEGF + bFGF containing beads − 4.8±1.1 mm2, PMP (100 μg/ml) containing beads − 5.1±1.3 mm2, p<0.001 versus control. The latter finding was further supported by immunohistochemical staining of the skin in the vicinity of the beads for von Willebrand factor, a marker of endothelial cells (control − 4.0±3.2, VEGF+bFGF − 12±4.4, PMP − 17±6.5 capillaries per view field, p<0.05 versus control). Finally, we explored the potential effect of PMP in a rat myocardial infarction model. Ischemia was induced by LAD ligation followed by injection of either PMP or PBS into the ischemic region. Preliminary evaluation of the LAD myocardial territory in sham-operated animals revealed 157±42.0 capillaries per view field. In contrast, number of capillaries observed 3 weeks after induction of ischemia was reduced to 34±21.5. When PMP were injected into the ischemic region, there was an increase in capillary number up to 97±27.3. In conclusion, PMP induce angiogenesis in both in vitro and in vivo models. Local injection of PMP into the ischemic myocardium may improve revascularization.

Author(s):  
Francesca Pontis ◽  
Luca Roz ◽  
Mavis Mensah ◽  
Miriam Segale ◽  
Massimo Moro ◽  
...  

Abstract Background Extracellular vesicles (EVs) containing specific subsets of functional biomolecules are released by all cell types and analysis of circulating EVs can provide diagnostic and prognostic information. To date, little is known regarding the role of EVs both as biomarkers and potential key players in human lung cancer. Methods Plasma EVs were isolated from 40 cancer-free heavy-smokers classified according to a validated 24-microRNA signature classifier (MSC) at high (MSCpos-EVs) or low (MSCneg-EVs) risk to develop lung cancer. EVs origin and functional properties were investigated using in vitro 3D cultures and in vivo models. The prognostic value of miRNAs inside EVs was assessed in training and in validation cohorts of 54 and 48 lung cancer patients, respectively. Results Different membrane composition, biological cargo and pro-tumorigenic activity were observed in MSCpos vs MSCneg-EVs. Mechanistically, in vitro and in vivo results showed that miR-126 and miR-320 from MSCpos-EVs increased pro-angiogenic phenotype of endothelial cells and M2 polarization of macrophage, respectively. MSCpos-EVs prompted 3D proliferation of non-tumorigenic epithelial cells through c-Myc transfer. Moreover, hypoxia was shown to stimulate the secretion of EVs containing c-Myc from fibroblasts, miR-126-EVs from endothelial cells and miR-320-EVs from granulocytes. Lung cancer patients with higher levels of mir-320 into EVs displayed a significantly shorter overall survival in training [HR2.96] and validation sets [HR2.68]. Conclusion Overall our data provide a new perspective on the pro-tumorigenic role of circulating EVs in high risk smokers and highlight the significance of miR-320-EVs as a new prognostic biomarker in lung cancer patients.


2016 ◽  
pp. S417-S425 ◽  
Author(s):  
H. FARGHALI ◽  
M. KGALALELO KEMELO ◽  
L. WOJNAROVÁ ◽  
N. KUTINOVÁ CANOVÁ

This mini-review highlights our and others’ experience about in vitro and in vivo models that are being used to follow up events of liver injuries under various hepatotoxic agents and potential hepatoprotective drugs. Due to limitations of the outcomes in each model, we focus primarily on two models. First, a developed perfusion method for isolated immobilized hepatocytes that improves the process of oxygenation and helps in end-product removal is of considerable value in improving cell maintenance. This cellular model is presented as a short-term research-scale laboratory bioreactor with various physiological, biochemical, molecular, toxicological and pharmacological applications. Second, the in vivo model of D-galactosamine and lipopolysaccharide (D-GalN/LPS) combination-induced liver damage is described with some details. Recently, we have revealed that resveratrol and other natural polyphenols attenuate D-GalN/LPS-induced hepatitis. Moreover, we reported that D-GalN/LPS down-regulates sirtuin 1 in rat liver. Therefore, we discuss here the role of sirtuin 1 modulation in hepatoprotection. A successful development of pharmacotherapy for liver diseases depends on the suitability of in vitro and in vivo hepatic injury systems. Several models are available to screen the hepatotoxic or hepatoprotective activity of any substance. It is important to combine different methods for confirmation of the findings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir Sissaoui ◽  
Stuart Egginton ◽  
Ling Ting ◽  
Asif Ahmed ◽  
Peter W. Hewett

AbstractPlacenta growth factor (PlGF) is a pro-inflammatory angiogenic mediator that promotes many pathologies including diabetic complications and atherosclerosis. Widespread endothelial dysfunction precedes the onset of these conditions. As very little is known of the mechanism(s) controlling PlGF expression in pathology we investigated the role of hyperglycaemia in the regulation of PlGF production in endothelial cells. Hyperglycaemia stimulated PlGF secretion in cultured primary endothelial cells, which was suppressed by IGF-1-mediated PI3K/Akt activation. Inhibition of PI3K activity resulted in significant PlGF mRNA up-regulation and protein secretion. Similarly, loss or inhibition of Akt activity significantly increased basal PlGF expression and prevented any further PlGF secretion in hyperglycaemia. Conversely, constitutive Akt activation blocked PlGF secretion irrespective of upstream PI3K activity demonstrating that Akt is a central regulator of PlGF expression. Knock-down of the Forkhead box O-1 (FOXO1) transcription factor, which is negatively regulated by Akt, suppressed both basal and hyperglycaemia-induced PlGF secretion, whilst FOXO1 gain-of-function up-regulated PlGF in vitro and in vivo. FOXO1 association to a FOXO binding sequence identified in the PlGF promoter also increased in hyperglycaemia. This study identifies the PI3K/Akt/FOXO1 signalling axis as a key regulator of PlGF expression and unifying pathway by which PlGF may contribute to common disorders characterised by endothelial dysfunction, providing a target for therapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 376
Author(s):  
Chantal B. Lucini ◽  
Ralf J. Braun

In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 1801-1809 ◽  
Author(s):  
Yoshihiro Yamada ◽  
Yuichi Oike ◽  
Hisao Ogawa ◽  
Yasuhiro Ito ◽  
Hajime Fujisawa ◽  
...  

Neuropilin-1 (NP-1) is a receptor for vascular endothelial growth factor-165 (VEGF165) and acts as a coreceptor that enhances the function of VEGF165 through VEGF receptor-2 (VEGFR-2). Studies using transgenic and knock-out mice of NP-1 indicated that this molecule is important for vascular development as well as neuronal development. We recently reported that clustered soluble NP-1 phosphorylates VEGFR-2 on endothelial cells with a low dose of VEGF165 and rescues the defective vascularity of the NP-1−/− embryo in vitro and in vivo. Here we show that NP-1 is expressed by CD45+ hematopoietic cells in the fetal liver, can bind VEGF165, and phosphorylates VEGFR-2 on endothelial cells. CD45+NP-1+ cells rescued the defective vasculogenesis and angiogenesis in the NP-1−/− P-Sp (para-aortic splanchnopleural mesodermal region) culture, although CD45+NP-1− cells did not. Moreover, CD45+NP-1+ cells together with VEGF165 induced angiogenesis in an in vivo Matrigel assay and cornea neovascularization assay. The extracellular domain of NP-1 consists of “a,” “b,” and “c” domains, and it is known that the “a” and “c” domains are necessary for dimerization of NP-1. We found that both the “a” and “c” domains are essential for such rescue of defective vascularities in the NP-1 mutant. These results suggest that NP-1 enhances vasculogenesis and angiogenesis exogenously and that dimerization of NP-1 is important for enhancing vascular development. In NP-1−/− embryos, vascular sprouting is impaired at the central nervous system (CNS) and pericardium where VEGF is not abundant, indicating that NP-1–expressing cells are required for normal vascular development.


2013 ◽  
Vol 305 (11) ◽  
pp. L844-L855 ◽  
Author(s):  
Ming-Yuan Jian ◽  
Mikhail F. Alexeyev ◽  
Paul E. Wolkowicz ◽  
Jaroslaw W. Zmijewski ◽  
Judy R. Creighton

Acute lung injury secondary to sepsis is a leading cause of mortality in sepsis-related death. Present therapies are not effective in reversing endothelial cell dysfunction, which plays a key role in increased vascular permeability and compromised lung function. AMP-activated protein kinase (AMPK) is a molecular sensor important for detection and mediation of cellular adaptations to vascular disruptive stimuli. In this study, we sought to determine the role of AMPK in resolving increased endothelial permeability in the sepsis-injured lung. AMPK function was determined in vivo using a rat model of endotoxin-induced lung injury, ex vivo using the isolated lung, and in vitro using cultured rat pulmonary microvascular endothelial cells (PMVECs). AMPK stimulation using N1-(α-d-ribofuranosyl)-5-aminoimidizole-4-carboxamide or metformin decreased the LPS-induced increase in permeability, as determined by filtration coefficient ( Kf) measurements, and resolved edema as indicated by decreased wet-to-dry ratios. The role of AMPK in the endothelial response to LPS was determined by shRNA designed to decrease expression of the AMPK-α1 isoform in capillary endothelial cells. Permeability, wounding, and barrier resistance assays using PMVECs identified AMPK-α1 as the molecule responsible for the beneficial effects of AMPK in the lung. Our findings provide novel evidence for AMPK-α1 as a vascular repair mechanism important in the pulmonary response to sepsis and identify a role for metformin treatment in the management of capillary injury.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Cheng-Hsiang Kuo ◽  
Po-Ku Chen ◽  
Bi-Ing Chang ◽  
Meng-Chen Sung ◽  
Chung-Sheng Shi ◽  
...  

AbstractLewis Y Ag (LeY) is a cell-surface tetrasaccharide that participates in angiogenesis. Recently, we demonstrated that LeY is a specific ligand of the recombinant lectin-like domain of thrombomodulin (TM). However, the biologic function of interaction between LeY and TM in endothelial cells has never been investigated. Therefore, the role of LeY in tube formation and the role of the recombinant lectin-like domain of TM—TM domain 1 (rTMD1)—in antiangiogenesis were investigated. The recombinant TM ectodomain exhibited lower angiogenic activity than did the recombinant TM domains 2 and 3. rTMD1 interacted with soluble LeY and membrane-bound LeY and inhibited soluble LeY-mediated chemotaxis of endothelial cells. LeY was highly expressed on membrane ruffles and protrusions during tube formation on Matrigel. Blockade of LeY with rTMD1 or Ab against LeY inhibited endothelial tube formation in vitro. Epidermal growth factor (EGF) receptor in HUVECs was LeY modified. rTMD1 inhibited EGF receptor signaling, chemotaxis, and tube formation in vitro, and EGF-mediated angiogenesis and tumor angiogenesis in vivo. We concluded that LeY is involved in vascular endothelial tube formation and rTMD1 inhibits angiogenesis via interaction with LeY. Administration of rTMD1 or recombinant adeno-associated virus vector carrying TMD1 could be a promising antiangiogenesis strategy.


2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1633 ◽  
Author(s):  
Sungho Lee ◽  
Patrick J. Karas ◽  
Caroline C. Hadley ◽  
James C. Bayley V ◽  
A. Basit Khan ◽  
...  

Mutations in the neurofibromin 2 (NF2) gene were among the first genetic alterations implicated in meningioma tumorigenesis, based on analysis of neurofibromatosis type 2 (NF2) patients who not only develop vestibular schwannomas but later have a high incidence of meningiomas. The NF2 gene product, merlin, is a tumor suppressor that is thought to link the actin cytoskeleton with plasma membrane proteins and mediate contact-dependent inhibition of proliferation. However, the early recognition of the crucial role of NF2 mutations in the pathogenesis of the majority of meningiomas has not yet translated into useful clinical insights, due to the complexity of merlin’s many interacting partners and signaling pathways. Next-generation sequencing studies and increasingly sophisticated NF2-deletion-based in vitro and in vivo models have helped elucidate the consequences of merlin loss in meningioma pathogenesis. In this review, we seek to summarize recent findings and provide future directions toward potential therapeutics for this tumor.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3530
Author(s):  
Jessica Gambardella ◽  
Antonella Fiordelisi ◽  
Gaetano Santulli ◽  
Michele Ciccarelli ◽  
Federica Andrea Cerasuolo ◽  
...  

The involvement of GRK2 in cancer cell proliferation and its counter-regulation of p53 have been suggested in breast cancer even if the underlying mechanism has not yet been elucidated. Furthermore, the possibility to pharmacologically inhibit GRK2 to delay cancer cell proliferation has never been explored. We investigated this possibility by setting up a study that combined in vitro and in vivo models to underpin the crosstalk between GRK2 and p53. To reach this aim, we took advantage of the different expression of p53 in cell lines of thyroid cancer (BHT 101 expressing p53 and FRO cells, which are p53-null) in which we overexpressed or silenced GRK2. The pharmacological inhibition of GRK2 was achieved using the specific inhibitor KRX-C7. The in vivo study was performed in Balb/c nude mice, where we treated BHT-101 or FRO-derived tumors with KRX-C7. In our in vitro model, FRO cells were unaffected by GRK2 expression levels, whereas BHT-101 cells were sensitive, thus suggesting a role for p53. The regulation of p53 by GRK2 is due to phosphorylative events in Thr-55, which induce the degradation of p53. In BHT-101 cells, the pharmacologic inhibition of GRK2 by KRX-C7 increased p53 levels and activated apoptosis through the mitochondrial release of cytochrome c. These KRX-C7-mediated events were also confirmed in cancer allograft models in nude mice. In conclusion, our data showed that GRK2 counter-regulates p53 expression in cancer cells through a kinase-dependent activity. Our results further corroborate the anti-proliferative role of GRK2 inhibitors in p53-sensitive tumors and propose GRK2 as a therapeutic target in selected cancers.


Sign in / Sign up

Export Citation Format

Share Document