Nanoparticle-based optical sensor arrays

Nanoscale ◽  
2017 ◽  
Vol 9 (43) ◽  
pp. 16546-16563 ◽  
Author(s):  
Arafeh Bigdeli ◽  
Forough Ghasemi ◽  
Hamed Golmohammadi ◽  
Samira Abbasi-Moayed ◽  
M. Amin Farahmand Nejad ◽  
...  

Recent progress in nanoparticle-based optical sensor arrays toward the detection and discrimination of a wide range of analytes.

2020 ◽  
Vol 17 ◽  
Author(s):  
Mohsen A.-M. Gomaa ◽  
Huda A. Ali

Background : The reactivity of 4-(dicyanomethylene)-3-methyl-l-phenyl-2-pyrazoline-5-one DCNP 1 and its derivatives makes it valuable as a building block for the synthesis of heterocyclic compounds like pyrazolo-imidazoles, - thiazoles, spiropyridines, spiropyrroles, spiropyrans and others. As a number of publications have reported on the reactivity of DCNP and its derivatives, we compiled some features of this interesting molecule. Objective: This article aims to review the preparation of DCNP, its reactivity and application in heterocyclic and dyes synthesis. Conclusion: In this review we have provided an overview of recent progress in the chemistry of DCNP and its significance in synthesis of various classes of heterocyclic compounds and dyes. The unique reactivity of DCNP offers unprecedentedly mild reaction conditions for the generation of versatile cynomethylene dyes from a wide range of precursors including amines, α-aminocarboxylic acids, their esters, phenols, malononitriles and azacrown ethers. We anticipate that more innovative transformations involving DCNP will continue to emerge in the near future.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 110
Author(s):  
Mir Saman Safavi ◽  
Frank C. Walsh ◽  
Maria A. Surmeneva ◽  
Roman A. Surmenev ◽  
Jafar Khalil-Allafi

Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.


2021 ◽  
Vol 3 (2) ◽  
pp. 506-530 ◽  
Author(s):  
Linda Mitchell ◽  
Elizabeth J. New ◽  
Clare S. Mahon
Keyword(s):  

Author(s):  
Keith Albert ◽  
Caroline Schauer ◽  
David Walt

2018 ◽  
Vol 6 (44) ◽  
pp. 11878-11892 ◽  
Author(s):  
Jing Li ◽  
Rongrong Bao ◽  
Juan Tao ◽  
Yiyao Peng ◽  
Caofeng Pan

This review summarizes the progress in flexible pressure sensor arrays from their fundamental designs to device applications.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2783
Author(s):  
Qi-Yao Wei ◽  
Yan-Ming Xu ◽  
Andy T. Y. Lau

Conventional chemotherapy is still an important option of cancer treatment, but it has poor cell selectivity, severe side effects, and drug resistance. Utilizing nanoparticles (NPs) to improve the therapeutic effect of chemotherapeutic drugs has been highlighted in recent years. Nanotechnology dramatically changed the face of oncology by high loading capacity, less toxicity, targeted delivery of drugs, increased uptake to target sites, and optimized pharmacokinetic patterns of traditional drugs. At present, research is being envisaged in the field of novel nano-pharmaceutical design, such as liposome, polymer NPs, bio-NPs, and inorganic NPs, so as to make chemotherapy effective and long-lasting. Till now, a number of studies have been conducted using a wide range of nanocarriers for the treatment of solid tumors including lung, breast, pancreas, brain, and liver. To provide a reference for the further application of chemodrug-loaded nanoformulations, this review gives an overview of the recent development of nanocarriers, and the updated status of their use in the treatment of several solid tumors.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1285 ◽  
Author(s):  
Haleh Nazemi ◽  
Aashish Joseph ◽  
Jaewoo Park ◽  
Arezoo Emadi

Micro- and nano-sensors lie at the heart of critical innovation in fields ranging from medical to environmental sciences. In recent years, there has been a significant improvement in sensor design along with the advances in micro- and nano-fabrication technology and the use of newly designed materials, leading to the development of high-performance gas sensors. Advanced micro- and nano-fabrication technology enables miniaturization of these sensors into micro-sized gas sensor arrays while maintaining the sensing performance. These capabilities facilitate the development of miniaturized integrated gas sensor arrays that enhance both sensor sensitivity and selectivity towards various analytes. In the past, several micro- and nano-gas sensors have been proposed and investigated where each type of sensor exhibits various advantages and limitations in sensing resolution, operating power, response, and recovery time. This paper presents an overview of the recent progress made in a wide range of gas-sensing technology. The sensing functionalizing materials, the advanced micro-machining fabrication methods, as well as their constraints on the sensor design, are discussed. The sensors’ working mechanisms and their structures and configurations are reviewed. Finally, the future development outlook and the potential applications made feasible by each category of the sensors are discussed.


Sign in / Sign up

Export Citation Format

Share Document