scholarly journals Controlled transportation of droplets and higher fog collection efficiency on a multi-scale and multi-gradient copper wire

RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29606-29610 ◽  
Author(s):  
Yan Xing ◽  
Sijie Wang ◽  
Shile Feng ◽  
Weifeng Shang ◽  
Siyan Deng ◽  
...  

Via a one-step gradient anodic oxidation, copper wire with a multi-scale structure and a multi-gradient was fabricated and controlled self-propelling of droplet was achieved.

LWT ◽  
2019 ◽  
Vol 116 ◽  
pp. 108515 ◽  
Author(s):  
Chunsen Wu ◽  
Qiu-Yan Wu ◽  
Mangang Wu ◽  
Wei Jiang ◽  
Jian-Ya Qian ◽  
...  

2021 ◽  
Author(s):  
Huishan Shen ◽  
Xiangzhen Ge ◽  
Bo Zhang ◽  
Chunyan Su ◽  
Qian Zhang ◽  
...  

Non-thermal plasma is an emerging and effective starch modification technology. In this paper, plasma pretreatment was used to modify the citrate naked barley starch for enhancing the accessibility of citric...


2021 ◽  
Vol 58 (7) ◽  
pp. 446-459
Author(s):  
T. Fox ◽  
S. M. Lößlein ◽  
D. W. Müller ◽  
F. Mücklich

Abstract Fingerprints, a butterfly’s wings, or a lotus leaf: when it comes to surfaces, there is no such thing as coincidence in animated nature. Based on their surfaces, animals and plants control their wettability, their swimming resistance, their appearance, and much more. Evolution has optimized these surfaces and developed a microstructure that fits every need. It is all the more astonishing that, with regard to technical surfaces, man confines himself to random roughnesses or “smooth” surfaces. It is surely not a problem of a lack of incentives: structured surfaces have already provided evidence of optimizing friction and wear [1, 2, 3, 4], improving electrical contacts [5, 6], making implants biocompatible [7, 8], keeping away harmful bacteria [9], and much more. How come we continue counting on grinding, polishing, sandblasting, or etching? As so often, the problem can be found in economic cost effectiveness. It is possible to produce interesting structures such as those of the feather in Fig. 1. However, generating fine structures in the micro and nanometer range usually requires precise processing techniques. This is complex, time-consuming, and cannot readily be integrated into a manufacturing process. Things are different with Direct Laser Interference Patterning, DLIP) [10, 11]. This method makes use of the strong interference pattern of overlapped laser beams as a “stamp” to provide an entire surface area with dots, lines, or other patterns – in one shot. It thus saves time, allows for patterning speeds of up to 1 m2/min and does it without an elaborate pre- or post-treatment [10, 12]. The following article intends to outline how the method works, which structures can be generated, and how the complex multi-scale structures that nature developed over millions of years can be replicated in only one step.


Author(s):  
Wenfei Yang ◽  
Tianzhu Zhang ◽  
Zhendong Mao ◽  
Yongdong Zhanga ◽  
Qi Tian ◽  
...  

2019 ◽  
Vol 91 ◽  
pp. 311-318 ◽  
Author(s):  
Dongling Qiao ◽  
Wenyao Tu ◽  
Binjia Zhang ◽  
Ran Wang ◽  
Nannan Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document