Applications of zeolites in biotechnology and medicine – a review

2018 ◽  
Vol 6 (5) ◽  
pp. 974-989 ◽  
Author(s):  
Lucie Bacakova ◽  
Marta Vandrovcova ◽  
Ivana Kopova ◽  
Ivan Jirka

Zeolites are microporous natural or synthetic tectosilicates, promising for organism detoxification, improvement of the nutrition status and immunity, separation of various biomolecules and cells, detection of biomarkers of various diseases, controlled drug and gene delivery, radical scavenging, haemostasis, tissue engineering and biomaterial coating.

2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


e-Polymers ◽  
2003 ◽  
Vol 3 (1) ◽  
Author(s):  
Joseph Jagur-Grodzinski

Abstract Papers published during 2001 - 2002 on the synthesis and preparation of polymers and polymer-based devices and their applications are reviewed. Polymers for drug and gene delivery, gene therapy, controlled drug release, conjugation with peptides, proteins, and nucleotides, tissue engineering, bone repair and regeneration, coatings, wound dressing, artificial skin and other artificial organs are discussed.


2021 ◽  
pp. 113995
Author(s):  
Lichen Yin ◽  
Jianjun Cheng ◽  
Timothy J. Deming ◽  
María J. Vicent

2016 ◽  
Vol 20 (28) ◽  
pp. 2949-2959 ◽  
Author(s):  
Mahdi Karimi ◽  
Seyed Basri ◽  
Manouchehr Vossoughi ◽  
Parvin Pakchin ◽  
Hamed Mirshekari ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 940
Author(s):  
Chaojie Zhu ◽  
Zhiheng Ji ◽  
Junkai Ma ◽  
Zhijie Ding ◽  
Jie Shen ◽  
...  

Cancer is one of the most devastating and ubiquitous human diseases. Conventional therapies like chemotherapy and radiotherapy are the most widely used cancer treatments. Despite the notable therapeutic improvements that these measures achieve, disappointing therapeutic outcome and cancer reoccurrence commonly following these therapies demonstrate the need for better alternatives. Among them, bacterial therapy has proven to be effective in its intrinsic cancer targeting ability and various therapeutic mechanisms that can be further bolstered by nanotechnology. In this review, we will discuss recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems in cancer treatment. Therapeutic mechanisms of these hybrid nanoformulations are highlighted to provide an up-to-date understanding of this emerging field.


2021 ◽  
Vol 32 (5) ◽  
pp. 1924-1950
Author(s):  
Amir Ghaderpour ◽  
Zohreh Hoseinkhani ◽  
Reza Yarani ◽  
Sina Mohammadiani ◽  
Farshid Amiri ◽  
...  

Biomaterials ◽  
2016 ◽  
Vol 82 ◽  
pp. 194-207 ◽  
Author(s):  
Xiaofei Liang ◽  
Bizhi Shi ◽  
Kai Wang ◽  
Mingliang Fan ◽  
Dejin Jiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document