scholarly journals Atomic-level design of CoOH+–hydroxyapatite@C catalysts for superfast degradation of organics via peroxymonosulfate activation

2018 ◽  
Vol 54 (39) ◽  
pp. 4919-4922 ◽  
Author(s):  
Feng Song ◽  
Huayang Zhang ◽  
Shaobin Wang ◽  
Lihong Liu ◽  
Xiaoyao Tan ◽  
...  

In situ formation of CoOH+–hydroxyapatite@C via ion exchange between Ca and Co realises the simultaneous adsorption of Co2+ and catalytic peroxymonosulfate oxidation for superfast oxidative degradation of organic contaminants.

Author(s):  
Bing Han ◽  
Wen Liu ◽  
Dongye Zhao

Emerging Organic Contaminants (EOCs) such as steroidal estrogen hormones are of growing concern in recent years, as trace concentrations of these hormones can cause adverse effects on the environmental and human health. While these hormones have been widely detected in soil and groundwater, effective technology has been lacking for in-situ degradation of these contaminants. This chapter illustrates a new class of stabilized MnO2 nanoparticles and a new in-situ technology for oxidative degradation of EOCs in soil and groundwater. The stabilized nanoparticles were prepared using a low-cost, food-grade Carboxymethyl Cellulose (CMC) as a stabilizer. The nanoparticles were then characterized and tested for their effectiveness for degradation of both aqueous and soil-sorbed E2 (17ß-estradiol). Column tests confirmed the effectiveness of the nanoparticles for in-situ remediation of soil sorbed E2. The nanoparticle treatment decreased both water leachable and soil-sorbed E2, offering a useful alternative for in-situ remediation of EOCs in the subsurface.


Author(s):  
Alba Santos ◽  
Richard Lewis ◽  
David John Morgan ◽  
Thomas Davies ◽  
Euan Hampton ◽  
...  

The oxidative degradation of phenol via the in-situ production of H2O2 from molecular H2 and O2 offers an attractive route to the destruction of organic contaminants in water streams, potentially...


2021 ◽  
Vol 9 (1) ◽  
pp. 104889
Author(s):  
Wyllamanney da S. Pereira ◽  
Fabrício B. Destro ◽  
Cipriano B. Gozzo ◽  
Edson R. Leite ◽  
Júlio C. Sczancoski

Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 824
Author(s):  
Przemysław J. Jodłowski ◽  
Izabela Czekaj ◽  
Patrycja Stachurska ◽  
Łukasz Kuterasiński ◽  
Lucjan Chmielarz ◽  
...  

The objective of our study was to prepare Y-, USY- and ZSM-5-based catalysts by hydrothermal synthesis, followed by copper active-phase deposition by either conventional ion-exchange or ultrasonic irradiation. The resulting materials were characterized by XRD, BET, SEM, TEM, Raman, UV-Vis, monitoring ammonia and nitrogen oxide sorption by FT-IR and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). XRD data confirmed the purity and structure of the Y/USY or ZSM-5 zeolites. The nitrogen and ammonia sorption results indicated that the materials were highly porous and acidic. The metallic active phase was found in the form of cations in ion-exchanged zeolites and in the form of nanoparticle metal oxides in sonochemically prepared catalysts. The latter showed full activity and high stability in the SCR deNOx reaction. The faujasite-based catalysts were fully active at 200–400 °C, whereas the ZSM-5-based catalysts reached 100% activity at 400–500 °C. Our in situ DRIFTS experiments revealed that Cu–O(NO) and Cu–NH3 were intermediates, also indicating the role of Brønsted sites in the formation of NH4NO3. Furthermore, the results from our experimental in situ spectroscopic studies were compared with DFT models. Overall, our findings suggest two possible mechanisms for the deNOx reaction, depending on the method of catalyst preparation (i.e., conventional ion-exchange vs. ultrasonic irradiation).


2011 ◽  
Vol 196 (23) ◽  
pp. 9955-9960 ◽  
Author(s):  
Sheng Zhang ◽  
Yuyan Shao ◽  
Yunzhi Gao ◽  
Guangyu Chen ◽  
Yuehe Lin ◽  
...  

2021 ◽  
pp. 117548
Author(s):  
Mengfan Luo ◽  
Hongyu Zhou ◽  
Peng Zhou ◽  
Leiduo Lai ◽  
Wen Liu ◽  
...  

2022 ◽  
Author(s):  
Feng Min ◽  
Zhengqing Wei ◽  
Zhen Yu ◽  
Yu-Ting Xiao ◽  
Shien Guo ◽  
...  

Both efficient charge separation and sufficiently exposed active sites are critical limiting for solar-driven organic contaminants degradation. Herein, we describe a hierarchical heterojunction photocatalyst fabricated by in situ growth of...


2018 ◽  
Vol 9 (23) ◽  
pp. 6750-6754 ◽  
Author(s):  
Alessandro Greco ◽  
Alexander Hinderhofer ◽  
M. Ibrahim Dar ◽  
Neha Arora ◽  
Jan Hagenlocher ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document