scholarly journals Biomimetic synthesis of 2-substituted N-heterocycle alkaloids by one-pot hydrolysis, transamination and decarboxylative Mannich reaction

2018 ◽  
Vol 54 (80) ◽  
pp. 11316-11319 ◽  
Author(s):  
James L. Galman ◽  
Iustina Slabu ◽  
Fabio Parmeggiani ◽  
Nicholas J. Turner

A novel multi-enzymatic approach enabled the facile synthesis of a broad range of biologically active 2-substituted piperidine and pyrrolidine alkaloids.


ChemInform ◽  
2011 ◽  
Vol 42 (28) ◽  
pp. no-no
Author(s):  
Abolghasem Davoodnia ◽  
Afsaneh Tavakoli-Nishaburi ◽  
Niloofar Tavakoli-Hoseini


2011 ◽  
Vol 32 (2) ◽  
pp. 635-638 ◽  
Author(s):  
Abolghasem Davoodnia ◽  
Afsaneh Tavakoli-Nishaburi ◽  
Tavakoli-Hoseini Niloofar


2020 ◽  
Vol 16 (8) ◽  
pp. 1161-1165
Author(s):  
Bashetti Nagaraju ◽  
Jagarlapudi V. Shanmukhakumar ◽  
Nareshvarma Seelam ◽  
Tondepu Subbaiah ◽  
Bethanamudi Prasanna

Background: Recently, there has been a lot of scientific interest in exploring the syntheses of oxygen and nitrogen-containing heterocyclic compounds due to their pharmacological activities. In addition, benzisoxazoles play a very important role in organic synthesis as key intermediates. Objective: In this paper, we focused on developing a novel synthetic route for biologically active arylisoxazoles under normal conditions, and simplified it to get high purities and yields, and also reported their anti-inflammatory activities. Method: An efficient and simple method has been explored for the synthesis of novel 3-methyl arylisoxazoles from o-nitroaryl halides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via Domino rearrangement in one pot synthesis. Result: We synthesized novel 3-methylarylisoxazoles from o-nitroarylhalides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via domino rearrangement. In this reduction, nitro group and ethoxy vinyl group change to the functional acyl ketones, followed by hetero cyclization. Here, the reaction proceeds without the isolation of intermediates like 2-acylnitroarenes and 2- acylanilines. All the synthesized compounds were completely characterized by the NMR and mass spectra. The compounds were also explored for their anti-inflammatory activity by carrageenan-induced inflammation in the albino rats (150-200 g) of either sex used in this entire study with the use of Diclofenac sodium as the standard drug. The initial evaluations identified leading targets with good to moderate anti-inflammatory activity. Conclusion: A simple, one-pot and convenient method has been explored for the synthesis of novel 3- methylarylisoxazoles with high purity and reaction yields. All the compounds 3a, 3c, 3d, 3f, 3g and 3h exhibited 51-64% anti-inflammatory activities.



Synthesis ◽  
2020 ◽  
Author(s):  
Peter Ehlers ◽  
Peter Langer ◽  
Marian Blanco Ponce ◽  
Silvio Parpart ◽  
Alexander Villinger ◽  
...  

AbstractA concise and modular synthesis of pyrrolo[1,2-a][1,6]- and [1,8]naphthyridines by a one-pot two-step reaction consisting of electrophilic acylation followed by an alkyne-carbonyl-metathesis reaction as the final cyclization step is reported. This developed synthetic methodology allows the facile synthesis of these heterocyclic core structures in mainly high overall yields under metal-free conditions. Reaction conditions are carefully optimized and display a novel supplement to access these tricyclic heterocyclic compounds.



2021 ◽  
Vol 7 (1) ◽  
pp. 62 ◽  
Author(s):  
Majid Rasool Kamli ◽  
Vartika Srivastava ◽  
Nahid H. Hajrah ◽  
Jamal S. M. Sabir ◽  
Khalid Rehman Hakeem ◽  
...  

Candida auris is an emergent multidrug-resistant pathogen that can lead to severe bloodstream infections associated with high mortality rates, especially in hospitalized individuals suffering from serious medical problems. As Candida auris is often multidrug-resistant, there is a persistent demand for new antimycotic drugs with novel antifungal action mechanisms. Here, we reported the facile, one-pot, one-step biosynthesis of biologically active Ag-Cu-Co trimetallic nanoparticles using the aqueous extract of Salvia officinalis rich in polyphenols and flavonoids. These medicinally important phytochemicals act as a reducing agent and stabilize/capping in the nanoparticles’ fabrication process. Fourier Transform-Infrared, Scanning electron microscopy, Transmission Electron Microscopy, Energy dispersive X-Ray, X-ray powder diffraction and Thermogravimetric analysis (TGA) measurements were used to classify the as-synthesized nanoparticles. Moreover, we evaluated the antifungal mechanism of as-synthesized nanoparticles against different clinical isolates of C. auris. The minimum inhibitory concentrations and minimum fungicidal concentrations ranged from 0.39–0.78 μg/mL and 0.78–1.56 μg/mL. Cell count and viability assay further validated the fungicidal potential of Ag-Cu-Co trimetallic nanoparticles. The comprehensive analysis showed that these trimetallic nanoparticles could induce apoptosis and G2/M phase cell cycle arrest in C. auris. Furthermore, Ag-Cu-Co trimetallic nanoparticles exhibit enhanced antimicrobial properties compared to their monometallic counterparts attributed to the synergistic effect of Ag, Cu and Co present in the as-synthesized nanoparticles. Therefore, the present study suggests that the Ag-Cu-Co trimetallic nanoparticles hold the capacity to be a lead for antifungal drug development against C. auris infections.



2021 ◽  
Vol 143 (7) ◽  
pp. 2716-2721
Author(s):  
Jun Zhu ◽  
Yi Han ◽  
Yong Ni ◽  
Guangwu Li ◽  
Jishan Wu


ChemInform ◽  
2003 ◽  
Vol 34 (48) ◽  
Author(s):  
Yujiro Hayashi ◽  
Wataru Tsuboi ◽  
Itaru Ashimine ◽  
Tatsuya Urushima ◽  
Mitsuru Shoji ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document