scholarly journals Facile Bio-Fabrication of Ag-Cu-Co Trimetallic Nanoparticles and Its Fungicidal Activity against Candida auris

2021 ◽  
Vol 7 (1) ◽  
pp. 62 ◽  
Author(s):  
Majid Rasool Kamli ◽  
Vartika Srivastava ◽  
Nahid H. Hajrah ◽  
Jamal S. M. Sabir ◽  
Khalid Rehman Hakeem ◽  
...  

Candida auris is an emergent multidrug-resistant pathogen that can lead to severe bloodstream infections associated with high mortality rates, especially in hospitalized individuals suffering from serious medical problems. As Candida auris is often multidrug-resistant, there is a persistent demand for new antimycotic drugs with novel antifungal action mechanisms. Here, we reported the facile, one-pot, one-step biosynthesis of biologically active Ag-Cu-Co trimetallic nanoparticles using the aqueous extract of Salvia officinalis rich in polyphenols and flavonoids. These medicinally important phytochemicals act as a reducing agent and stabilize/capping in the nanoparticles’ fabrication process. Fourier Transform-Infrared, Scanning electron microscopy, Transmission Electron Microscopy, Energy dispersive X-Ray, X-ray powder diffraction and Thermogravimetric analysis (TGA) measurements were used to classify the as-synthesized nanoparticles. Moreover, we evaluated the antifungal mechanism of as-synthesized nanoparticles against different clinical isolates of C. auris. The minimum inhibitory concentrations and minimum fungicidal concentrations ranged from 0.39–0.78 μg/mL and 0.78–1.56 μg/mL. Cell count and viability assay further validated the fungicidal potential of Ag-Cu-Co trimetallic nanoparticles. The comprehensive analysis showed that these trimetallic nanoparticles could induce apoptosis and G2/M phase cell cycle arrest in C. auris. Furthermore, Ag-Cu-Co trimetallic nanoparticles exhibit enhanced antimicrobial properties compared to their monometallic counterparts attributed to the synergistic effect of Ag, Cu and Co present in the as-synthesized nanoparticles. Therefore, the present study suggests that the Ag-Cu-Co trimetallic nanoparticles hold the capacity to be a lead for antifungal drug development against C. auris infections.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


2021 ◽  
pp. 089270572110514
Author(s):  
Himanshu V Madhad ◽  
Dilip V Vasava

Over the years, various types of techniques have been used for the synthesis of nanocomposites. In this work, melamine-based polyamide (PA) was synthesized using a one-pot polycondensation method under mild conditions. carboxyl graphene (CG)/PA nanocomposites (CGMPA) were prepared by CG nanofiller loadings of 1, 3, and 5 wt.% via delamination/adsorption approach. The prepared CGMPA nanocomposites were characterized using different analyses, such as Fourier transform infrared techniques (FTIR), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), differential scanning calorimetric (DSC), and thermogravimetric analysis (TGA). The effects of the CG on the thermal properties of the CGMPA nanocomposites were significant. The results showed that the melting temperature (Tm) of neat PA and CGMPA were increased from 378°C to 393°C suggested better dispersion of CG in PA matrix. The decomposition temperature of PA was increased from 451°C to 463°C in CGMPA nanocomposites indicates the better thermal stability of PA matrix by addition of CG.


2019 ◽  
Vol 43 (3-4) ◽  
pp. 135-139
Author(s):  
Pegah Farokhian ◽  
Manouchehr Mamaghani ◽  
Nosrat Ollah Mahmoodi ◽  
Khalil Tabatabaeian ◽  
Abdollah Fallah Shojaie

An efficient protocol for the facile synthesis of a series of pyrido[2,3- d]pyrimidine derivatives has been developed applying Fe3O4–ZnO–NH2–PW12O40 nanocatalyst in water. This novel method has the benefits of operational simplicity, green aspects by avoiding toxic solvents and high to excellent yields of products. Fe3O4–ZnO–NH2–PW12O40 was synthesized and characterized by Fourier transform infrared, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy analyses. The nanocatalyst is readily isolated and recovered from the reaction mixture by an external magnet.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1138
Author(s):  
Abdulmohsen Ali Alshehri ◽  
Maqsood Ahmad Malik

Biomolecules from plant extracts have gained significant interest in the synthesis of nanoparticles owing to their sustainable properties, cost efficiency, and environmental wellbeing. An eco-friendly and facile method has been developed to prepare Cu-Co-Ni trimetallic nanoparticles with simultaneous bio-reduction of Cu-Co-Ni metal precursors by aqueous extract of oregano (Origanum vulgare) leaves. Dramatic changes in physicochemical properties of trimetallic nanoparticles occur due to synergistic interactions between individual metal precursors, which in turn outclass the properties of corresponding monometallic nanoparticles in various aspects. The as biosynthesized Cu-Co-Ni trimetallic nanoparticles were initially analyzed using ultraviolet (UV)–visible spectroscopy. The morphology, structure, shape, and size of biosynthesized trimetallic nanoparticles were confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) spectroscopy. The elemental analysis was carried out by energy-dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) microscopy was carried out to explain the critical role of the biomolecules in the Origanum vulgare leaf extract as capping and stabilizing agents in the nanoparticle formation. Additionally, simultaneous thermogravimetric analysis (TGA) and differential thermogravimetry (DTG) analysis was also performed to estimate the mass evaluation and rate of the material weight changes. The photocatalytic activity of as biosynthesized trimetallic nanoparticles was investigated towards methylene blue (MB) dye degradation and was found to be an efficient photocatalyst for dye degradation. Kinetic experiments have shown that photocatalytic degradation of MB dye followed pseudo-first-order kinetics. The mechanism of the photodegradation process of biogenic Cu-Co-Ni trimetallic nanoparticles was also addressed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 999
Author(s):  
Yi-An Chen ◽  
Kuo-Hsien Chou ◽  
Yi-Yang Kuo ◽  
Cheng-Ye Wu ◽  
Po-Wen Hsiao ◽  
...  

To the best of our knowledge, this report presents, for the first time, the schematic of the possible chemical reaction for a one-pot synthesis of Zn0.5Cd0.5Se alloy quantum dots (QDs) in the presence of low/high oleylamine (OLA) contents. For high OLA contents, high-resolution transmission electron microscopy (HRTEM) results showed that the average size of Zn0.5Cd0.5Se increases significantly from 4 to 9 nm with an increasing OLA content from 4 to 10 mL. First, [Zn(OAc)2]–OLA complex can be formed by a reaction between Zn(OAc)2 and OLA. Then, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) data confirmed that ZnO is formed by thermal decomposition of the [Zn(OAc)2]–OLA complex. The results indicated that ZnO grew on the Zn0.5Cd0.5Se surface, thus increasing the particle size. For low OLA contents, HRTEM images were used to estimate the average sizes of the Zn0.5Cd0.5Se alloy QDs, which were approximately 8, 6, and 4 nm with OLA loadings of 0, 2, and 4 mL, respectively. We found that Zn(OAc)2 and OLA could form a [Zn(OAc)2]–OLA complex, which inhibited the growth of the Zn0.5Cd0.5Se alloy QDs, due to the decreasing reaction between Zn(oleic acid)2 and Se2−, which led to a decrease in particle size.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1999
Author(s):  
Jinsheng Cheng ◽  
Sheng Zhong ◽  
Weihong Wan ◽  
Xiaoyuan Chen ◽  
Ali Chen ◽  
...  

In this work, novel graphene/In2O3 (GR/In2O3) nanocubes were prepared via one-pot solvothermal treatment, reduction reaction, and successive annealing technology at 600 °C step by step. Interestingly, In2O3 with featured cubic morphology was observed to grow on multi-layered graphene nanosheets, forming novel GR/In2O3 nanocubes. The resulting nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), etc. Further investigations demonstrated that a selective electrochemical sensor based on the prepared GR/In2O3 nanocubes can be achieved. By using the prepared GR/In2O3-based electrochemical sensor, the enantioselective and chem-selective performance, as well as the optimal conditions for L-Lysine detection in Camellia nitidissima Chi, were evaluated. The experimental results revealed that the GR/In2O3 nanocube-based electrochemical sensor showed good chiral recognition features for L-lysine in Camellia nitidissima Chi with a linear range of 0.23–30 μmol·L−1, together with selectivity and anti-interference properties for other different amino acids in Camellia nitidissima Chi.


2019 ◽  
Vol 11 (12) ◽  
pp. 1731-1738 ◽  
Author(s):  
Ma Hui ◽  
Wu Juzhen ◽  
Zhao Li ◽  
Zhou Zheng ◽  
Guo Jiahu

A one-pot simple and efficient synthetic route for the synthesis of Au-loaded Fe2O3 nanoparticles was developed, and this material's photocatalytic activity for visible light assisted oxidation of alcohols and degradation of organic dye were studied. As-synthesized nanostructured catalyst was characterised by powder X-ray diffraction (XRD), transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), SEM-mapping, X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherm (BET), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). It was observed that 5–10 nm Au-nanoparticles supported on 10–80 nm Fe2O3 shows boomerang-shaped nanoparticle. Gold loading of 1 wt% shows high conversion and selectivity towards the target product aldehyde. The synthesized nanomaterial also proved to be an excellent photocatalyst for degradation of organic dyes such as methylene blue (MB) and rhodamine B (RhB). The catalyst proved to be noteworthy as it does not loss in its catalytic activity even after five cycles of reuse.


2020 ◽  
Vol 17 ◽  
Author(s):  
Sultanat ◽  
Anam Ansari ◽  
Mohd Qamar ◽  
Shafiullah ◽  
Sartaj Tabassum ◽  
...  

Background: Corticosteroids are important group of polycyclic compounds having a wide range of pharmacological and physiological properties. Thiopyran derivatives are important building blocks of many biologically active compounds. Objective: Keeping in mind the wide range of application of corticosteroid and thiopyran, herein we intend to develop a simple and efficient strategy to synthesize steroidal thiopyran derivatives starting with different commercially available corticosteroid and study their biological property. Materials and Methods: To achieve our aim, we employed a one-pot multicomponent synthesis of steroidal thiopyran derivatives by the reaction of corticosteriods, malononitrile and carbon disulphide in presence of triethyl amine as a catalyst. Results and Discussion : An array of novel thiopyran compounds were obtained with the highest product yield using Et3N. Scanning electron microscopy analysis manifested agglomeration pertaining to brick - shaped crystals of corticosteroid thiopyran. Synthesized compound were also found to be active as antibacterial agents. Conclusion: We describe a facile one-pot multicomponent synthesis of corticosteroid thiopyran derivatives which are found to possess antibacterial activity. Excellent yields of the products, simple work-up, easily available starting materials and non-chromatographic purification are some main advantages of this protocol.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Fei Long ◽  
Shuyi Mo ◽  
Yan Zeng ◽  
Shangsen Chi ◽  
Zhengguang Zou

Flower-like Cu2ZnSnS4(CZTS) nanoflakes were synthesized by a facile and fast one-pot solution reaction using copper(II) acetate monohydrate, zinc acetate dihydrate, tin(IV) chloride pentahydrate, and thiourea as starting materials. The as-synthesized samples were characterized by X-ray diffraction (XRD), Raman scattering analysis, field emission scanning electron microscopy (FESEM) equipped with an energy dispersion X-ray spectrometer (EDS), transmission electron microscopy (TEM), and UV-Vis absorption spectra. The XRD patterns shown that the as-synthesized particles were kesterite CZTS and Raman scattering analysis and EDS confirmed that kesterite CZTS was the only phase of product. The results of FESEM and TEM show that the as-synthesized particles were flower-like morphology with the average size of 1~2 μm which are composed of 50 nm thick nanoflakes. UV-Vis absorption spectrum revealed CZTS nanoflakes with a direct band gap of 1.52 eV.


2020 ◽  
Vol 2 (10) ◽  
Author(s):  
Melek Kızaloğlu Akbulut ◽  
Christina Harreiß ◽  
Mario Löffler ◽  
Karl J. J. Mayrhofer ◽  
Michael Schöbitz ◽  
...  

Abstract Proccessible FePt3 alloy nanoparticles with sizes smaller than 50 nm open the avenue to novel magnetic sensor, catalytic and biomedical applications. Our research objective was to establish a highly scalable synthesis technique for production of single-crystalline FePt3 alloy nanoparticles. We have elaborated a one-pot thermal decomposition technique for the synthesis of superparamagnetic FePt3 nanoparticles (FePt3 NPs) with mean sizes of 10 nm. Subsequent tiron coating provided water solubility of the FePt3 NPs and further processibility as bidental ligands enable binding to catalyst surfaces, smart substrates or biosensors. The chemical composition, structure, morphology, magnetic, optical and crystallographic properties of the FePt3 NPs were examined using high resolution transmission electron microscopy, high-angle annular dark field-scanning transmission electron microscopy, scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy mapping, Fourier transform infrared-attenuated total reflection, X-ray powder diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometry and UV–Vis absorption spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document