Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry

2018 ◽  
Vol 47 (15) ◽  
pp. 5614-5645 ◽  
Author(s):  
Atanu Jana ◽  
Steffen Bähring ◽  
Masatoshi Ishida ◽  
Sébastien Goeb ◽  
David Canevet ◽  
...  

Tetrathiafulvalene- (TTF-) based macrocyclic systems, cages and supramolecularly self-assembled 3D constructs have been extensively explored as functional materials for sensing and switching applications.

Author(s):  
Christophe Lescop ◽  
Guillaume Calvez ◽  
Florent Moutier ◽  
Jana Schiller

3,3’-bipyridine ligand B was reacted with pre-assembled [Cu2(2-dppm)2] Cu(I) bimetallic flexible precursor A accordingly to coordination-driven supramolecular chemistry synthetic principles. Outcomes obtained revealed the necessity to formally introduce bridging halide...


2019 ◽  
Vol 55 (58) ◽  
pp. 8426-8429 ◽  
Author(s):  
Catherine Adam ◽  
Lara Faour ◽  
Valérie Bonnin ◽  
Tony Breton ◽  
Eric Levillain ◽  
...  

Helical foldamers were incorporated in self-assembled monolayers that successfully transduce host–guest binding events.


2013 ◽  
Vol 699 ◽  
pp. 87-91 ◽  
Author(s):  
Victor Borovkov

This paper presents a succinct overview of recent advances of our research groups in the field of supramolecular chirogenic systems in the solution and in the solid state and consequent progress towards various functional materials having potential applications in different areas of science and technology. The phenomenon of supramolecular chirality, which is a smart combination of supramolecular chemistry and chiral science, is demonstrated with one of the most representative structural motifs amongst existing chirogenic systems, which is based upon the ethane-bridged bis-porphyrinoids. Further progress towards various functional materials is made upon preparation of different thin-films and nanostructures using the same bis-porphyrin architecture. For more practical application of functional materials chiral modification of metal surface is carried out resulting in effective asymmetric catalyst.


2012 ◽  
Vol 1454 ◽  
pp. 221-226
Author(s):  
Brandon Richard ◽  
Norma Alcantar ◽  
Andrew Hoff ◽  
Sylvia Thomas

ABSTRACTRecent trends in composite research include the development of structural materials with multiple functionalities. In new studies, novel materials are being designed, developed, modified, and implemented into composite designs. Typically, an increase in functionality requires additional material phases within one system. The presence of excessive phases can result in deterioration of individual or overall properties. True multi-functional materials must maintain all properties at or above the minimum operating limit. In this project, samples of Sb-doped SnO2(ATO) sol-gel solutions are used to coat carbon fibers and are heat treated at a temperature range of 200 – 500 °C. Results from this research are used to model the implementation of sol-gel coatings into carbon fiber reinforced multifunctional composite systems. This research presents a novel thermo-responsive sol-gel/ (dopant) combination and evaluation of the actuating responses due to various heat treatment temperatures. While ATO is a well-known transparent conductive material, the implementation of ATO on carbon fibers for infrared thermal reflectivity has not been examined. These coatings serve as actuators capable of reflecting thermal infrared radiation in mid-range and near-range wavelengths (λ). By altering the ATO sol gel thickness and heat treatment temperatures, optimal optical properties are obtained. While scanning electron microscopy (SEM) is used for imaging, electron diffraction spectroscopy (EDS) is used to verify the compounds present in the coatings. Fourier transform infrared (FT-IR) spectroscopy was performed to analyze the reflectivity in the infrared spectra and analyze the crystal structures after heat treatments.


2001 ◽  
Author(s):  
ALAN R BURNS ◽  
DARRYL Y SASAKI ◽  
R W CARPICK ◽  
JOHN A SHELNUTT ◽  
C JEFFREY BRINKER

2021 ◽  
Vol 23 (1) ◽  
pp. 236
Author(s):  
Vincenzo Patamia ◽  
Giuseppe Floresta ◽  
Venerando Pistarà ◽  
Antonio Rescifina

This article reports an alternative method for preparing nitrones using a tetrahedral capsule as a nanoreactor in water. Using the hydrophobic cavity of the capsule allowed us to reduce the reaction times and easily separate the nitrones from the reaction mixture, obtaining reaction yields equal or comparable to those obtained with the methods already reported. Furthermore, at the basis of this methodology, there is an eco-friendly approach carried out that can certainly be extended to other synthesis methods for the preparation of other substrates by exploiting various types of macrocyclic hosts, suitably designed and widely used in supramolecular chemistry.


Photochem ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 32-57
Author(s):  
Shashikana Paria ◽  
Prasenjit Maity ◽  
Rafia Siddiqui ◽  
Ranjan Patra ◽  
Shubhra Bikash Maity ◽  
...  

Luminescent micelles are extensively studied molecular scaffolds used in applied supramolecular chemistry. These are particularly important due to their uniquely organized supramolecular structure and chemically responsive physical and optical features. Various luminescent tags can be incorporated with these amphiphilic micelles to create efficient luminescent probes that can be utilized as “chemical noses” (sensors) for toxic and hazardous materials, bioimaging, drug delivery and transport, etc. Due to their amphiphilic nature and well-defined reorganized self-assembled geometry, these nano-constructs are desirable candidates for size and shape complementary guest binding or sensing a specific analyte. A large number of articles describing micellar fluorogenic probes are reported, which are used for cation/anion sensing, amino acid and protein sensing, drug delivery, and chemo-sensing. However, this particular review article critically summarizes the sensing application of nitroaromatic (e.g., trinitrotoluene (TNT), trinitrobenzene (TNB), trinitrophenol (TNP), dinitrobenzene (DNB), etc.) and nitramine explosives (e.g., 1,3,5-trinitro-1,3,5-triazinane, trivially named as “research department explosive” (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, commonly known as “high melting explosive” (HMX) etc.). A deeper understanding on these self-assembled luminescent “functional materials” and the physicochemical behavior in the presence of explosive analytes might be helpful to design the next generation of smart nanomaterials for forensic applications. This review article will also provide a “state-of-the-art” coverage of research involving micellar–explosive adducts demonstrating the intermolecular charge/electron transfer (CT/ET) process operating within the host–guest systems.


Nanoscale ◽  
2021 ◽  
Author(s):  
Ankit Gangrade ◽  
Nicholas Stephanopoulos ◽  
Dhiraj Devidas Bhatia

DNA-based nanotechnology has evolved into an autonomous, highly innovative, and dynamic field of research at the nexus of supramolecular chemistry, nanotechnology, materials science, and biotechnology. DNA-based materials, including origami nanodevices,...


Sign in / Sign up

Export Citation Format

Share Document