Selective hydrazine sensor fabrication with facile low-dimensional Fe2O3/CeO2 nanocubes

2018 ◽  
Vol 42 (12) ◽  
pp. 10263-10270 ◽  
Author(s):  
Mohammed M. Rahman ◽  
M. M. Alam ◽  
Abdullah M. Asiri

Here, the binary-doped metal oxides of Fe2O3/CeO2 nanocubes were prepared using reliable hydrothermal process, which is applied to fabricate an efficient and selective hydrazine chemical sensor shows good analytical sensing performances as well as validated the sensor prove with the environmental and extracted real samples.

2013 ◽  
Vol 431 ◽  
pp. 37-41 ◽  
Author(s):  
Amirul Abd Rashid ◽  
Nor Hayati Saad ◽  
Chia Sheng Daniel Bien ◽  
Wai Yee Lee ◽  
M.A.S.M. Haniff

Tungsten trioxide (WO3) nanostructure with aspect ratio of 20 (length/diameter) have been successfully synthesized by single step hydrothermal reaction at moderate temperature of 180 °C. The crystal structure and morphology evolution are characterized by SEM and Raman while the carbon dioxide (CO2) sensing capability was tested by simple sensor fabrication .It was observed that the nanorods were initially coalesce in bundles before breaking up loosely towards the end of the hydrothermal process. A response measurement reveals that the sensor was able to detect CO2 at room temperature with the sensitivity around 13ohm/100 ppm. The detection performance of such nanostructure provides a positive indication that it can be a competitive sensor element candidate not only for CO2 applications in particular but can be expanded to other gas sensing application such as O2, C2H4 and NO2.


Nanoscale ◽  
2020 ◽  
Vol 12 (40) ◽  
pp. 20719-20725
Author(s):  
Kai Rong ◽  
Jiale Wei ◽  
Liang Huang ◽  
Youxing Fang ◽  
Shaojun Dong

A direct DES calcining method is developed to prepare low-dimensional and highly active transition metal oxides (TMOs) for electrochemical oxygen evolution reaction.


2019 ◽  
Vol 43 (48) ◽  
pp. 19298-19307 ◽  
Author(s):  
Mohammed M. Rahman ◽  
Jahir Ahmed ◽  
Abdullah M. Asiri

In this approach, low-dimensional facile IAO nanorods were prepared by using the hydrothermal technique, which is efficiently applied to develop a non-enzymatic sensor coated with GCE probe by electrochemical reduction method.


2019 ◽  
Vol 19 (6) ◽  
pp. 3637-3642 ◽  
Author(s):  
Yas Al-Hadeethi ◽  
Ahmad Umar ◽  
Kulvinder Singh ◽  
Ahmed A Ibrahim ◽  
Saleh. H Al-Heniti ◽  
...  

Herein, we report the synthesis, characterization and picric acid chemical sensing application of samarium (Sm) doped ZnO nanorods. The Sm-doped ZnO nanorods were synthesized by facile hydrothermal process and characterized using various analytical methods which confirmed the large-scale synthesis and wurtzite hexagonal crystal structure for the synthesized nanorods. The doping of Sm ions in the lattices of the synthesized nanorods was evaluated by the energy dispersive X-ray spectroscopy (EDS). The synthesized Sm-doped ZnO nanorods were used as potential scaffold to fabricate high sensitive and reproducible picric acid chemical sensor based on I–V technique. The fabricated picric acid chemical sensor based on Sm-doped ZnO nanorods exhibited a high sensitivity of 213.9 mA mM−1 cm−2 with the limit of detection of ∼0.228 mM and correlation coefficient of R═0.9889. The obtained results revealed that the facile grown Sm-doped ZnO nanorods can efficiently be used to fabricate high sensitive and reproducible chemical sensors.


RSC Advances ◽  
2019 ◽  
Vol 9 (72) ◽  
pp. 42050-42061 ◽  
Author(s):  
Mohammed M. Rahman ◽  
M. M. Alam ◽  
Abdullah M. Asiri

Low-dimensional ternary ZnO/NiO/MnO2 nanoparticles were prepared by wet-chemical co-precipitation in alkaline medium and then used to develop a selective and ultra-sensitive 1,4-dioxane sensor using electrochemistry for the safety of healthcare and the environment.


Author(s):  
Junhua Kuang ◽  
Jie Yang ◽  
Kai Liu ◽  
Zhiyuan Zhao ◽  
Wei Shi ◽  
...  

The safety of animal-origin foods has major influence on human health. Although the use of veterinary drug additives (VDAs) significantly promotes the normal growth and development of the animals against...


Sign in / Sign up

Export Citation Format

Share Document