A diboronic acid fluorescent sensor for selective recognition of d-ribose via fluorescence quenching

2019 ◽  
Vol 43 (11) ◽  
pp. 4385-4390 ◽  
Author(s):  
Hao Wang ◽  
Guiqian Fang ◽  
Hongxiao Wang ◽  
Jindi Dou ◽  
Zhancun Bian ◽  
...  

Herein we reported a novel boronic acid-based water-soluble sensor. It decreased the fluorescence by 50% when combined with 0.0146 M of d-ribose, while increased or not changed obviously after binding to other carbohydrates.

2018 ◽  
Vol 96 (4) ◽  
pp. 363-370 ◽  
Author(s):  
You-Ming Zhang ◽  
Xiao-Peng Chen ◽  
Guo-Yan Liang ◽  
Kai-Peng Zhong ◽  
Hong Yao ◽  
...  

The selective recognition of target ions in water is very important and the development of novel water-soluble chemosensor is still an intriguing challenge. Herein, a novel water-soluble fluorescent sensor based on aspartic acid (Asp) functionalized 1,8-naphthalimide derivative (Asp-NI) has been designed and synthesized. The sensor Asp-NI could dissolve in water and successively detect Fe3+ and H2PO4− in water solution with high selectivity and sensitivity. The detection limits are 4.97 × 10−7 mol/L for Fe3+ and 5.27 × 10−6 mol/L for H2PO4−. Other coexistent competitive metal ions (Hg2+, Ag+, Ca2+, Cu2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cr3+, and Mg2+) showed no interference in the Fe3+ detection process. The sensor Asp-NI could act as a Fe3+ and H2PO4− controlled “On–Off–On” fluorescent switch. More interestingly, the Fe3+ induced fluorescence quenching process could be totally reversed by the addition of H2PO4−, this “On–Off–On” switching process could be repeated several times with little fluorescence loss. Notably, the actual usage of sensor Asp-NI was further demonstrated by test kits.


Langmuir ◽  
2002 ◽  
Vol 18 (21) ◽  
pp. 7785-7787 ◽  
Author(s):  
Nicolas DiCesare ◽  
Mauricio R. Pinto ◽  
Kirk S. Schanze ◽  
Joseph R. Lakowicz

2012 ◽  
Vol 177 (3-4) ◽  
pp. 357-364 ◽  
Author(s):  
Lilin Sun ◽  
Dan Hao ◽  
Weili Shen ◽  
Zhangsheng Qian ◽  
Changqing Zhu

2011 ◽  
Vol 64 (11) ◽  
pp. 1438 ◽  
Author(s):  
Nicholas McGregor ◽  
Christophe Pardin ◽  
W. G. Skene

A series of water-soluble 1-amino-naphthalenes and 2-amino-fluorenes are prepared. These serve as model fluorophores for measuring the thermodynamics and kinetics of fluorescence quenching with phenylboronic acids and aliphatic amines. Steady-state and time-resolved fluorescence quenching kinetics are investigated using the Stern–Volmer method. Diffusion limited quenching constants and exergonic thermodynamics of electron transfer are derived for the 5-amino-1-napthol and 2-aminofluorene derivatives with phenylboronic acid and/or an aliphatic imine. No quenching and endergonic thermodynamics or electron transfer are observed for 5-sulfonamide, 5-sulfonic acid, or 5-hydroxy-7-sulfonic acid aminonaphthalene derivatives. Boronic acid sensors synthesized from these aminofluorophores by reductive amination with 2-formylphenylboronic acid undergo fluorescence revival in the presence of saccharides only when the fluorophore demonstrates diffusion limited quenching kinetics and exergonic thermodynamics of electron transfer with the boronic acid or imine quenchers. Thus, these two properties are suitable empirical tools for predicting saccharide-induced fluorescence revival of boronic acid sensors.


Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 65
Author(s):  
Minji Lee ◽  
Donghwan Choe ◽  
Soyoung Park ◽  
Hyeongjin Kim ◽  
Soomin Jeong ◽  
...  

A novel thiosemicarbazide-based fluorescent sensor (AFC) was developed. It was successfully applied to detect hypochlorite (ClO−) with fluorescence quenching in bis-tris buffer. The limit of detection of AFC for ClO− was analyzed to be 58.7 μM. Importantly, AFC could be employed as an efficient and practical fluorescent sensor for ClO− in water sample and zebrafish. Moreover, AFC showed a marked selectivity to ClO− over varied competitive analytes with reactive oxygen species. The detection process of AFC to ClO− was illustrated by UV–visible and fluorescent spectroscopy and electrospray ionization–mass spectrometry (ESI–MS).


2021 ◽  
Author(s):  
Lamiaa Reda Ahmed ◽  
Ahmed F. M. EL-Mahdy ◽  
Cheng-Tang Pan ◽  
Shiao-Wei Kuo

In this paper, we describe the construction of a new fluorescent hydroxyl- and hydrazone-based covalent organic framework (TFPB-DHTH COF) through the one-pot polycondensation of 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 2,5-dihydroxyterephthalohydrazide (DHTH) under...


2014 ◽  
Vol 56 ◽  
pp. 58-63 ◽  
Author(s):  
Jian Xu ◽  
Qian Li ◽  
Ying Yue ◽  
Yong Guo ◽  
Shijun Shao

2021 ◽  
Vol 236 ◽  
pp. 118108
Author(s):  
Zhifeng Cai ◽  
Ruitao Zhu ◽  
Shen Zhang ◽  
Liangliang Wu ◽  
Junhong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document