scholarly journals Tetra-fluorinated aromatic azide for highly efficient bioconjugation in living cells

RSC Advances ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Xuekang Cai ◽  
Dan Wang ◽  
Yasi Gao ◽  
Long Yi ◽  
Xing Yang ◽  
...  

A fast strain-promoted azide–alkyne cycloaddition based on tetra-fluorinated aromatic azide was developed and applied to label proteins and living cells with high efficiency.

RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 9955-9963
Author(s):  
Yanjing Liu ◽  
Jiawei He ◽  
Bing Zhang ◽  
Huacheng Zhu ◽  
Yang Yang ◽  
...  

Microwave enabled air plasma was boosted by a carbon fiber cloth (CFC) and used for the high-efficiency surface modification of the CFC, yielding CFCs with tunable contents of oxygen and each O-containing group.


Author(s):  
Xiaojiao Cai ◽  
Siyuan Fang ◽  
Yun Hang Hu

Direct and highly efficient methane conversion to methanol under mild conditions is achieved via photocatalysis over Au–Pd/TiO2.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander D. Taylor ◽  
Qing Sun ◽  
Katelyn P. Goetz ◽  
Qingzhi An ◽  
Tim Schramm ◽  
...  

AbstractDeposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries.


Author(s):  
Xuewei Li ◽  
Wei She ◽  
Jing Wang ◽  
Weizuo Li ◽  
Guangming Li

Bi-metal organic frameworks (Bi-MOFs) derived carbon-based catalysts have exhibited the considerable potential for hydrogenation reactions. However, designing a suitable bi-MOF to fabricate the highly efficient catalyst is still great challenge....


Optik ◽  
2021 ◽  
pp. 168274
Author(s):  
Safa A. Badawy ◽  
Rui Su ◽  
Ahmed A. Fadda ◽  
Ehab Abdel-Latif ◽  
Ahmed EL-Shafei ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenqing Zhu ◽  
Kuangyu Ding ◽  
Chen Yi ◽  
Ruilin Chen ◽  
Bin Wei ◽  
...  

In this study, we have synthesized the molybdenum sulfide quantum dots (MoS2 QDs) and zinc sulfide quantum dots (ZnS QDs) and demonstrated a highly efficient green phosphorescent organic light-emitting diode (OLED) with hybrid poly (3,4-ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT:PSS)/QDs hole injection layer (HIL). The electroluminescent properties of PEDOT:PSS and hybrid HIL based devices were explored. An optimized OLED based on the PEDOT:PSS/MoS2 QDs HIL exhibited maximum current efficiency (CE) of 72.7 cd A−1, which shows a 28.2% enhancement as compared to counterpart with single PEDOT:PSS HIL. The higher device performance of OLED with hybrid HIL can be attributed to the enhanced hole injection capacity and balanced charge carrier transportation in the OLED devices. The above analysis illustrates an alternative way to fabricate the high efficiency OLEDs with sulfide quantum dots as a HIL.


2018 ◽  
Vol 13 (14) ◽  
pp. 1791-1796 ◽  
Author(s):  
Yonghui Xie ◽  
Longhuai Cheng ◽  
Yasi Gao ◽  
Xuekang Cai ◽  
Xing Yang ◽  
...  

2019 ◽  
Vol 55 (75) ◽  
pp. 11251-11254 ◽  
Author(s):  
Wen Yin ◽  
Jun Chen ◽  
Huihui Yang ◽  
Yanfei Zhang ◽  
Zong Dai ◽  
...  

A biocompatible liposome was fabricated to introduce highly efficient oligonucleotide amplification in living cells for the sensitive and sustained imaging of microRNA.


2020 ◽  
Vol 8 (21) ◽  
pp. 7200-7210 ◽  
Author(s):  
Takahiro Kamata ◽  
Hisahiro Sasabe ◽  
Nozomi Ito ◽  
Yoshihito Sukegawa ◽  
Ayato Arai ◽  
...  

A smart high-triplet energy hole-transporter exhibits significant stability in the anion state realizing record-breaking highly efficient and long-living thermally activated delayed fluorescent (TADF) organic light-emitting devices (OLEDs).


1942 ◽  
Vol 25 (4) ◽  
pp. 579-595 ◽  
Author(s):  
Robert Emerson ◽  
Charlton M. Lewis

The absorption spectra of the principal pigment components extracted from Chroococcus cells have been measured, and their sum compared with the absorption of a suspension of living cells. The agreement was sufficiently close so that it was concluded the absorption spectra of the extracted and separated pigment components could be used to obtain estimates of the relative absorption of the various components in the living cells. The quantum yield of Chroococcus photosynthesis was measured at a succession of wave lengths throughout the visible spectrum, and the dependence of yield on wave length was compared with the proportions of light absorbed by the pigment components. This comparison showed beyond reasonable doubt that the light absorbed by phycocyanin is utilized in photosynthesis with an efficiency approximately equal to that of the light absorbed by chlorophyll. The light absorbed by the carotenoid pigments of Chroococcus seems for the most part to be unavailable for photosynthesis. The results leave open the possibility that light absorbed by the carotenoids is active in photosynthesis, but with an efficiency considerably lower than that of chlorophyll and phycocyanin. It is also possible that the light absorbed by one or a few of the several carotenoid components is utilized with a high efficiency, while the light absorbed by most of the components is lost for photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document