Tuneable shape-memory properties of composites based on nanoparticulated plant biomass, lignin, and poly(ethylene carbonate)

Soft Matter ◽  
2018 ◽  
Vol 14 (45) ◽  
pp. 9227-9231 ◽  
Author(s):  
Kazuhiro Shikinaka ◽  
Yudai Funatsu ◽  
Yuki Kubota ◽  
Yoichi Tominaga ◽  
Masaya Nakamura ◽  
...  

A shape-memory polymer consisting of lignin and poly(ethylene carbonate) was obtained only by kneading without any toxic reagents.

e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Zonghui Li ◽  
Yi Pan ◽  
Peng Zhang ◽  
Zhaohui Zheng ◽  
Xiaobin Ding ◽  
...  

AbstractA novel shape memory polymer based on conetworks (CNs) was synthesized. These conetworks consisting of poly(methyl methacrylate) and poly (ethylene glycol) diacrylates showed excellent shape-memory properties with a recovery ratio of nearly 100%. Moreover, different shape memory effects were discovered in different mediums due to their amphiphilic properties. In addition, a large storage modulus ratio above and below the glass transition temperature(Eratio), which probably means excellent shape memory effect, were obtained due to the designed CN structure whether crystallization existed or not. It is quite different from the traditional methods to achieve large Eratio values. The versatility of shapememory conetworks potentially provides us a new route to prepare shape memory materials.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 807 ◽  
Author(s):  
Lin Xia ◽  
Han Gao ◽  
Weina Bi ◽  
Wenxin Fu ◽  
Guixue Qiu ◽  
...  

Shape memory composites of trans-1,4-polyisoprene (TPI) and low-density polyethylene (LDPE) with easily achievable transition temperatures were prepared by a simple physical blending method. Carbon black (CB) was introduced to improve the mechanical properties of the TPI/LDPE composites. The mechanical, cure, thermal and shape memory properties of the TPI/LDPE/CB composites were investigated in this study. In these composites, the crosslinked network generated in both the TPI and LDPE portions acted as a fixed domain, while the crystalline regions of the TPI and LDPE portions acted as a reversible domain in shape memory behavior. We found the mechanical properties of composites were promoted significantly with an increase of CB content, accompanied with the deterioration of shape memory properties of composites. When CB dosage was 5 parts per hundred of rubber composites (phr), best shape memory property of composites was obtained with a shape fixity ratio of 95.1% and a shape recovery ratio of 95.0%.


Author(s):  
Haibao Lu ◽  
Yong Tang ◽  
Jihua Gou ◽  
Erin Chow ◽  
Jinsong Leng ◽  
...  

To electrically activate the shape recovery in a styrene-based shape-memory polymer (SMP) by coating with conductive carbon nanofiber paper has been demonstrated in this paper. Carbon nanofibers in the form of paper sheet in combination with SMP significantly improve the electrical and thermal conductivity of polymer, leading to the actuation of SMP/nanopaper composite (with 15% volume fraction of carbon nanopaper, dimension of 10.0 cm × 0.5 cm × 0.3 cm) can be carried out by applying 8.4 V voltage, with response time of 140 s. Therefore, electrical conductivity of 6.6 S/cm is obtained. This approach, although demonstrated in styrene-based polymer, is applicable to other type of SMP materials. Furthermore, the morphologies of carbon nanofiber in the form of paper is observed by scanning electron microscopy, and the thermomechanical properties of composites are measured and analyzed by dynamic mechanical analysis.


2010 ◽  
Vol 64 (3) ◽  
pp. 284-286 ◽  
Author(s):  
Lian-Song Wang ◽  
He-Chun Chen ◽  
Zuo-Chun Xiong ◽  
Xiu-Bing Pang ◽  
Cheng-Dong Xiong

Sign in / Sign up

Export Citation Format

Share Document