Exploring new two-dimensional monolayers: pentagonal transition metal borides/carbides (penta-TMB/Cs)

2018 ◽  
Vol 6 (22) ◽  
pp. 10226-10232 ◽  
Author(s):  
Yangfan Shao ◽  
Mengmeng Shao ◽  
Yoshiyuki Kawazoe ◽  
Xingqiang Shi ◽  
Hui Pan

The development of two-dimensional (2D) materials with high conductivity and catalytic activity is important for the proposed hydrogen economy.

Nanoscale ◽  
2019 ◽  
Vol 11 (23) ◽  
pp. 11305-11314 ◽  
Author(s):  
Mohammad Khazaei ◽  
Junjie Wang ◽  
Mehdi Estili ◽  
Ahmad Ranjbar ◽  
Shigeru Suehara ◽  
...  

Considering the recent breakthroughs in the synthesis of novel two-dimensional (2D) materials from layered bulk structures, ternary layered transition metal borides, known as MAB phases, have come under scrutiny as a means of obtaining novel 2D transition metal borides, the so-called MBenes.


Nanoscale ◽  
2021 ◽  
Author(s):  
Yameng Li ◽  
Lei Li ◽  
Rao Huang ◽  
Yuhua Wen

As an emerging family of two-dimensional (2D) materials, transition metal borides (MBenes) have attracted increasing interest due to their potential applications in electrochemistry, especially electrocatalysis. In this work, we addressed...


Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


Nanoscale ◽  
2021 ◽  
Author(s):  
Shiyao Wang ◽  
Nanxi Miao ◽  
Kehe Su ◽  
Vladislav A. Blatov ◽  
Junjie Wang

Intrinsic two-dimensional (2-D) magnets are promising materials for developing advanced spintronic devices. Few have already been synthesized from the exfoliation of the van der Waals magnetic materials. In this work,...


Author(s):  
Shiyao Wang ◽  
Mohammad Khazaei ◽  
Junjie Wang ◽  
Hideo Hosono

Two-dimensional (2-D) magnetic materials are promising to be ideal platforms for constructing novel spintronic devices. Until to now, most 2-D magnetic materials have mainly been achieved by the exfoliation of...


Author(s):  
Fang Wu ◽  
Min Dou ◽  
Huan Li ◽  
Yunfei Liu ◽  
Qingnian Yao ◽  
...  

It is important to predict new two-dimensional (2D) ferromagnetic materials for next-generation information storage media. However, discovered 2D ferromagnetic materials are still rare. Here, we explored that 2D transition metal...


Nanoscale ◽  
2021 ◽  
Author(s):  
Haona Zhang ◽  
Shuhua Wang ◽  
Hao Wang ◽  
Baibiao Huang ◽  
Shuping Dong ◽  
...  

In comparison to defect/doping induced activity in materials, transition metal borides with exposed metal atom, large specific surface area and high active site density show advantages as durable and efficient...


Nanoscale ◽  
2021 ◽  
Author(s):  
Jianchen Lu ◽  
Gefei Niu ◽  
Xiao Ren ◽  
De-Liang Bao ◽  
Hui Chen ◽  
...  

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are emerging as new electrocatalysts and photocatalysts, in which edge sites of 2D TMDs are highly catalytic activity and are thus favored at the...


2019 ◽  
Vol 116 (42) ◽  
pp. 20844-20849 ◽  
Author(s):  
Cong Su ◽  
Zongyou Yin ◽  
Qing-Bo Yan ◽  
Zegao Wang ◽  
Hongtao Lin ◽  
...  

Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T′-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.


Sign in / Sign up

Export Citation Format

Share Document