N-doping of graphene: toward long-term corrosion protection of Cu

2018 ◽  
Vol 6 (47) ◽  
pp. 24136-24148 ◽  
Author(s):  
Siming Ren ◽  
Mingjun Cui ◽  
Wensheng Li ◽  
Jibin Pu ◽  
Qunji Xue ◽  
...  

N-doped graphene could be a promising candidate for long-term corrosion protection of Cu because of its low conductivity compared to pristine graphene.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3751
Author(s):  
Luoqiao Han ◽  
Lei Dong ◽  
Haiyan Chen ◽  
Shuai Yang ◽  
Aiheng Yuan ◽  
...  

Nitrogen-doped graphene (NG) was synthesized through the chemical vapor deposition (CVD) of graphene on Cu substrates, which were pre-implanted with N ions by the ion implantation method. The pre-implanted N ions in the Cu substrate could dope graphene by the substitution of C atoms during the CVD growth of graphene, forming NG. Based on this, NG’s long-term protection properties for Cu were evaluated by ambient exposure for a corrosion test. The results showed that NG can obviously reduce the natural oxidation of Cu in the long-term exposure compared with the case of pristine graphene (PG) coated on Cu. Moreover, with the increase in pre-implanted N dose, the formed NG’s long-term protection for Cu improved. This indicates that the modification of graphene by N doping is an effective way to improve the corrosion resistance of the PG coating owing to the reduction in its conductivity, which would inhibit galvanic corrosion by cutting off electron transport across the interface in their long-term protection. These findings provide insight into corrosion mechanisms of the graphene coating and correlate with its conductive nature based on heteroatoms doping, which is a potential route for improving the corrosion resistance of graphene as an effective barrier coating for metals.



Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 695 ◽  
Author(s):  
Mengjie Zhang ◽  
Wenchang Zhu ◽  
Xingzhe Yang ◽  
Meng Feng ◽  
Hongbin Feng

Few-layer exfoliated black phosphorus (Ex-BP) has attracted tremendous attention owing to its promising applications, including in electrocatalysis. However, it remains a challenge to directly use few-layer Ex-BP as oxygen-involved electrocatalyst because it is quite difficult to restrain structural degradation caused by spontaneous oxidation and keep it stable. Here, a robust carbon-stabilization strategy has been implemented to prepare carbon-coated Ex-BP/N-doped graphene nanosheet (Ex-BP/NGS@C) nanostructures at room temperature, which exhibit superior oxygen evolution reaction (OER) activity under alkaline conditions. Specifically, the as-synthesized Ex-BP/NGS@C hybrid presents a low overpotential of 257 mV at a current density of 10 mA cm−2 with a small Tafel slope of 52 mV dec−1 and shows high durability after long-term testing.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malgorzata Skorupska ◽  
Anna Ilnicka ◽  
Jerzy P. Lukaszewicz

AbstractThe synthesis of metal-free but electrochemically active electrode materials, which could be an important contributor to environmental protection, is the key motivation for this research approach. The progress of graphene material science in recent decades has contributed to the further development of nanotechnology and material engineering. Due to the unique properties of graphene materials, they have found many practical applications: among others, as catalysts in metal-air batteries, supercapacitors, or fuel cells. In order to create an economical and efficient material for energy production and storage applications, researchers focused on the introduction of additional heteroatoms to the graphene structure. As solutions for functionalizing pristine graphene structures are very difficult to implement, this article presents a facile method of preparing nitrogen-doped graphene foam in a microwave reactor. The influence of solvent type and microwave reactor holding time was investigated. To characterize the elemental content and structural properties of the obtained N-doped graphene materials, methods such as elemental analysis, high-resolution transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy were used. Electrochemical activity in ORR of the obtained materials was tested using cyclic voltamperometry (CV) and linear sweep voltamperometry (LSV). The tests proved the materials’ high activity towards ORR, with the number of electrons reaching 3.46 for tested non-Pt materials, while the analogous value for the C-Pt (20 wt% loading) reference was 4.



2014 ◽  
Vol 553 ◽  
pp. 3-9 ◽  
Author(s):  
Hai Fei Zhan ◽  
Ye Wei ◽  
Yuan Tong Gu

Doping as one of the popular methods to manipulate the properties of nanomaterials has received extensive application in deriving different types of graphene derivates, while the understanding of the resonance properties of dopant graphene is still lacking in literature. Based on the large-scale molecular dynamics simulation, reactive empirical bond order potential, as well as the tersoff potential, the resonance properties of N-doped graphene were studied. The studied samples were established according to previous experiments with the N atom’s percentage ranging from 0.38%-2.93%, including three types of N dopant locations, i.e., graphitic N, pyrrolic N and pyridinic N. It is found that different percentages of N-dopant exert different influence to the resonance properties of the graphene, while the amount of N-dopant is not the only factor that determines its impact. For all the considered cases, a relative large percentage of N-dopant (2.65% graphitic N-dopant) is observed to introduce significant influence to the profile of the external energy, and thus lead to an extremely low Q-factor comparing with that of the pristine graphene. The most striking finding is that the natural frequency of the defective graphene with N-dopant’s percentage higher than 0.89% appears larger than its pristine counterpart. For the perfect graphene, the N-dopant shows larger influence to its natural frequency. This study will enrich the current understanding of the influence of dopants on graphene, which will eventually shed lights on the design of different molecules-doped graphene sheet.



2021 ◽  
pp. 151578
Author(s):  
Ingrid Milošev ◽  
Damir Hamulić ◽  
Peter Rodič ◽  
Charly Carrière ◽  
Sandrine Zanna ◽  
...  


2022 ◽  
Vol 163 ◽  
pp. 106608
Author(s):  
Vinodh K. Korrapati ◽  
Nico Scharnagl ◽  
Dietmar Letzig ◽  
Mikhail L. Zheludkevich


2021 ◽  
Vol 04 ◽  
Author(s):  
Diego Moreira Schlemper ◽  
Sérgio Henrique Pezzin

: Self-healing coatings are intended to increase long-term durability and reliability and can be enabled by the presence of microcapsules containing a self-healing agent capable of interacting with the matrix and regenerating the system. This review article provides an overview of the state-of-the-art, focusing on the patents published in the field of microcapsule-based self-healing organic coatings, since the early 2000’s. A discussion about coatings for corrosion protection and the different self-healing approaches and mechanisms are also addressed, as well as future challenges and expectations for this kind of coatings.



Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 597
Author(s):  
Martin González-Hernández ◽  
Ermete Antolini ◽  
Joelma Perez

Pt electrocatalysts supported on pristine graphene nanosheets (GNS) and nitrogen-doped graphene nanoplatelets (N-GNP) were prepared through the ethylene glycol process, and a comparison of their CO tolerance and stability as anode materials in polymer electrolyte membrane fuel cells (PEMFCs) with those of the conventional carbon (C)-supported Pt was made. Repetitive potential cycling in a half cell showed that Pt/GNS catalysts have the highest stability, in terms of the highest sintering resistance (lowest particle growth) and the lowest electrochemically active surface area loss. By tests in PEMFCs, the Pt/N-GNP catalyst showed the highest CO tolerance, while the poisoning resistance of Pt/GNS was lower than that of Pt/C. The higher CO tolerance of Pt/N-GNP than that of Pt/GNS was ascribed to the presence of a defect in graphene, generated by N-doping, decreasing CO adsorption energy.



2020 ◽  
Vol 305 ◽  
pp. 00016
Author(s):  
Ion Antonio Tache ◽  
Carmen Tache

Pipelines around the world are in danger due to ageing, deposits and corrosion. Leaky fittings and cracks are an environmental hazard and cause the loss of valuable resources such as drinking water, gas, or oil. The pipelines may get corroded internally due to the nature of the fluid flowing inside and due to various other factors. The environmental and societal impact of infrastructure failure is a primary consideration for today’s pipeline operators. Without implementing safety measures and having a corrosion control program, corrosion makes transporting hazardous material unsafe. There are many methods NACE (National Association of Corrosion Engineers) recommends as part of a successful corrosion control program to protect oil and gas pipelines. Coatings and linings applied to pipelines whether above or below ground and often used in combination with cathodic protection. Different linings may be used for internal corrosion protection, provided the lining material does not degrade following long-term exposure to the transported fluid, at the pipeline pressure and temperature conditions.



Sign in / Sign up

Export Citation Format

Share Document