NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors

2018 ◽  
Vol 6 (35) ◽  
pp. 17057-17066 ◽  
Author(s):  
Ruiying Shi ◽  
Cuiping Han ◽  
Hongfei Li ◽  
Lei Xu ◽  
Tengfei Zhang ◽  
...  

This work demonstrates egg-white derived activated carbon with exceptionally high specific surface area and improved graphitization degree using NaCl template.

2021 ◽  
pp. 2150022
Author(s):  
Wei Yang ◽  
Cailian Zhu ◽  
Li Li ◽  
Weihua Wang ◽  
Zheng Yang

In this paper, a well-designed process to fabricate bio-mass carbon with ultra-high specific surface area (UHSSA) and hierarchical porous (HP) structure is achieved. The process pre-treating with ethanol and KOH cooperatively is first introduced to optimize the microstructure and porosity. The as-prepared carbons present an UHSSA of ca. 3521 m2 [Formula: see text] g[Formula: see text], with large amounts of micro and mesopores. The assembled asymmetric flexible super-capacitor (SC) holds very high energy density of 49.9 Wh [Formula: see text] kg[Formula: see text] at 90 W [Formula: see text] kg[Formula: see text], and 10.3 Wh [Formula: see text] kg[Formula: see text] at the higher power density of 9 kW [Formula: see text] kg[Formula: see text], demonstrating that the device possesses long cyclic life and well stability. The exciting results reveal that our study provides an effective approach to biomass recycling by pre-treatment of ethanol and KOH producing HP carbons possessing ultra-high SSA for high-energy storage applications.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 345 ◽  
Author(s):  
Lianzan Yang ◽  
Yongyan Li ◽  
Zhifeng Wang ◽  
Weimin Zhao ◽  
Chunling Qin

High-entropy alloys (HEAs) present excellent mechanical properties. However, the exploitation of chemical properties of HEAs is far less than that of mechanical properties, which is mainly limited by the low specific surface area of HEAs synthesized by traditional methods. Thus, it is vital to develop new routes to fabricate HEAs with novel three-dimensional structures and a high specific surface area. Herein, we develop a facile approach to fabricate nanoporous noble metal quasi-HEA microspheres by melt-spinning and dealloying. The as-obtained nanoporous Cu30Au23Pt22Pd25 quasi-HEA microspheres present a hierarchical porous structure with a high specific surface area of 69.5 m2/g and a multiphase approximatively componential solid solution characteristic with a broad single-group face-centered cubic XRD pattern, which is different from the traditional single-phase or two-phase solid solution HEAs. To differentiate, these are named quasi-HEAs. The synthetic strategy proposed in this paper opens the door for the synthesis of porous quasi-HEAs related materials, and is expected to promote further applications of quasi-HEAs in various chemical fields.


2019 ◽  
Vol 12 (6) ◽  
pp. 1979-1988 ◽  
Author(s):  
Xiao Xu ◽  
Hongjun Zhang ◽  
Junxuan Ao ◽  
Lu Xu ◽  
Xiyan Liu ◽  
...  

The development of high specific surface area amidoxime-based polymeric (H-ABP) fibers presents a new technology for the synthesis of highly efficient adsorbents for uranium extraction from seawater (UES), thus opening a whole new means of nuclear fuel production from the ocean.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1468 ◽  
Author(s):  
Yun Gu ◽  
Le-Qing Fan ◽  
Jian-Ling Huang ◽  
Cheng-Long Geng ◽  
Jian-Ming Lin ◽  
...  

Co@NiSe2 electrode materials were synthesized via a simple hydrothermal method by using nickel foam in situ as the backbone and subsequently characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and a specific surface area analyzer. Results show that the Co@NiSe2 electrode exhibits a nanowire structure and grows uniformly on the nickel foam base. These features make the electrode show a relatively high specific surface area and electrical conductivity, and thus exhibit excellent electrochemical performance. The obtained electrode has a high specific capacitance of 3167.6 F·g−1 at a current density of 1 A·g−1. To enlarge the potential window and increase the energy density, an asymmetric supercapacitor was assembled by using a Co@NiSe2 electrode and activated carbon acting as positive and negative electrodes, respectively. The prepared asymmetrical supercapacitor functions stably under the potential window of 0–1.6 V. The asymmetric supercapacitor can deliver a high energy density of 50.0 Wh·kg−1 at a power density of 779.0 W·kg−1. Moreover, the prepared asymmetric supercapacitor exhibits a good rate performance and cycle stability.


CrystEngComm ◽  
2018 ◽  
Vol 20 (42) ◽  
pp. 6727-6732 ◽  
Author(s):  
Weijuan Lin ◽  
Yingheng Huang ◽  
Guoqiang He

Lantern-like CoS hierarchitectures, having a perfect crystal structure, a high specific surface area and lots of nanoscale 3D channels, are synthesized.


RSC Advances ◽  
2015 ◽  
Vol 5 (62) ◽  
pp. 50063-50069 ◽  
Author(s):  
Li-Ping Lv ◽  
Zhong-Shuai Wu ◽  
Long Chen ◽  
Hao Lu ◽  
Yi-Ran Zheng ◽  
...  

We describe the synthesis of hierarchical porous nitrogen-doped carbon nanoparticles with high specific surface area and specific capacitance for supercapacitors.


Sign in / Sign up

Export Citation Format

Share Document