CuO–SnO2 reverse cubic heterojunctions as high-performance supercapacitor electrodes

2019 ◽  
Vol 7 (3) ◽  
pp. 1160-1167 ◽  
Author(s):  
Mingyan Chuai ◽  
Xi Chen ◽  
Kewei Zhang ◽  
Jing Zhang ◽  
Mingzhe Zhang

The high value of hole effective mass is the main reason for the high specific capacitance of CuO–SnO2 heterojunctions.

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Xiaona Wang ◽  
Zhenyu Zhou ◽  
Zhijian Sun ◽  
Jinho Hah ◽  
Yagang Yao ◽  
...  

Abstract Coaxial fiber-shaped supercapacitors are a promising class of energy storage devices requiring high performance for flexible and miniature electronic devices. Yet, they are still struggling from inferior energy density, which comes from the limited choices in materials and structure used. Here, Zn-doped CuO nanowires were designed as 3D framework for aligned distributing high mass loading of MnO2 nanosheets. Zn could be introduced into the CuO crystal lattice to tune the covalency character and thus improve charge transport. The Zn–CuO@MnO2 as positive electrode obtained superior performance without sacrificing its areal and gravimetric capacitances with the increasing of mass loading of MnO2 due to 3D Zn–CuO framework enabling efficient electron transport. A novel category of free-standing asymmetric coaxial fiber-shaped supercapacitor based on Zn0.11CuO@MnO2 core electrode possesses superior specific capacitance and enhanced cell potential window. This asymmetric coaxial structure provides superior performance including higher capacity and better stability under deformation because of sufficient contact between the electrodes and electrolyte. Based on these advantages, the as-prepared asymmetric coaxial fiber-shaped supercapacitor exhibits a high specific capacitance of 296.6 mF cm−2 and energy density of 133.47 μWh cm−2. In addition, its capacitance retention reaches 76.57% after bending 10,000 times, which demonstrates as-prepared device’s excellent flexibility and long-term cycling stability.


RSC Advances ◽  
2017 ◽  
Vol 7 (76) ◽  
pp. 48341-48353 ◽  
Author(s):  
Xia Yang ◽  
Yuying Yang ◽  
Quancai Zhang ◽  
Xiaotong Wang ◽  
Yufeng An ◽  
...  

1-Hydroxyanthraquinone (HAQ) is selected to functionalize the dissected carbon nanotubes (rDCNTs) with reduced graphene oxide layers through non-covalent modification. The composite achieves high specific capacitance and ultrahigh rate capability.


2019 ◽  
Vol 7 (19) ◽  
pp. 12018-12028 ◽  
Author(s):  
Xiuhua Wang ◽  
Feifei Huang ◽  
Fang Rong ◽  
Peng He ◽  
Ronghui Que ◽  
...  

A new one-dimensional hierarchical hollow MnO2 nanotubes@NiCo-LDH/CoS2 nanocage supercapacitor, MnO2@NiCo-LDH/CoS2, achieves a high specific capacitance and high stability.


2020 ◽  
Vol 8 (41) ◽  
pp. 21852-21861
Author(s):  
Xue Yong ◽  
Gang Wu ◽  
Wen Shi ◽  
Zicong Marvin Wong ◽  
Tianqi Deng ◽  
...  

First-principles calculations of a series of representing D–A copolymers demonstrated the strong Super-Exchange couplings induce not only small hole effective mass but also weak electron-phonon couplings, and eventually high thermoelectric power factor.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051005 ◽  
Author(s):  
Godlaveeti Sreenivasa Kumar ◽  
Somala Adinarayana Reddy ◽  
Hussen Maseed ◽  
Nagireddy Ramamanohar Reddy

In this work, we present the synthesis of a ternary CeO2–SnO2/rGO nanocomposite by using a facile one-step hydrothermal method. The as-synthesized composite was structural, chemical, morphological, elemental information studied by using different characterization techniques X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDAX) and transmission electron microscope (TEM). The CeO2–SnO2/rGO exhibited an excellent specific capacitance of 156[Formula: see text]F[Formula: see text][Formula: see text] at 0.5[Formula: see text]A/g in the presence of 3 M KOH solution. The synergic effect of CeO2, SnO2 and graphene composite coated on Ni foam endowed a high specific capacitance than their individual compounds. This work suggests that the novel ternary composite is a promising candidate for the high performance electrochemical energy storage and conversion systems.


2014 ◽  
Vol 16 (33) ◽  
pp. 17936-17942 ◽  
Author(s):  
Lei Yu ◽  
Nannan Shi ◽  
Qi Liu ◽  
Jun Wang ◽  
Bin Yang ◽  
...  

A novel sandwich-like structured Co–Al LDH–CNT composite has been successfully synthesized. The as-prepared Co–Al LDHs–CNTs composite exhibites a high specific capacitance and a good cycle stability over 2000 cycles


2017 ◽  
Vol 20 (4) ◽  
pp. 197-204
Author(s):  
Weiliang Chen ◽  
Shuhua Pang ◽  
Zheng Liu ◽  
Zhewei Yang ◽  
Xin Fan ◽  
...  

Polypyrrole with hierarchical dendritic structures assembled with cauliflower-like structure of nanospheres, was synthesized by chemical oxidation polymerization. The structure of polyryrrole was characterized by Fourier transform infrared spectrometer and scanning electron microscopy. The electrochemical performance was performed on CHI660 electrochemical workstation. The results show that oxalic acid has a significant effect on morphology of PPy products. The hierarchical dendritic PPyOA(3) electrodes possess a large specific capacitance as high as 744 F/g at a current density of 0.2 A/g and could achieve a higher specific capacitance of 362 F/g even at a current density of 5.0 A/g. Moreover, the dendritic PPy products produce a large surface area on the electrode through the formation of the channel structure with their assembled cauliflower-like morphology, which facilitates the charge/electron transfer relative to the spherical PPy electrode. The spherical dendritic PPyOA(3) electrode has 58% retention of initial specific capacitance after 260 cycles. The as-prepared dendritic polypyrrole with high performance is a promsing electrode material for supercapacitor.


RSC Advances ◽  
2016 ◽  
Vol 6 (105) ◽  
pp. 102961-102967 ◽  
Author(s):  
Chandu V. V. M. Gopi ◽  
Mallineni Venkata-Haritha ◽  
Soo-Kyoung Kim ◽  
Kandasamy Prabakar ◽  
Hee-Je Kim

The flower-like ZnO@MnCo2O4 nanosheet electrode exhibited high specific capacitance than dandelion-like MnCo2O4.


RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 3020-3024 ◽  
Author(s):  
Yunjiu Cao ◽  
Lei An ◽  
Lijun Liao ◽  
Xijian Liu ◽  
Tao Ji ◽  
...  

ZnO@CoMoO4 core/shell structures as an electrode for supercapacitors exhibited a high specific capacitance of 1.52 F cm−2 (1169 F g−1) at 2 mA cm−2 and a good cycling stability of 109% of the initial specific capacitance after 5000 cycles.


Sign in / Sign up

Export Citation Format

Share Document