Electron transport at the interface of organic semiconductors and hydroxyl-containing dielectrics

2018 ◽  
Vol 6 (44) ◽  
pp. 12001-12005 ◽  
Author(s):  
Huihong Jiang ◽  
Zhuoting Huang ◽  
Guobiao Xue ◽  
Hongzheng Chen ◽  
Hanying Li

High electron transport can be obtained at the interface of organic semiconductors and hydroxyl-containing dielectrics.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4026
Author(s):  
Jaroslaw Jung ◽  
Arkadiusz Selerowicz ◽  
Paulina Maczugowska ◽  
Krzysztof Halagan ◽  
Renata Rybakiewicz-Sekita ◽  
...  

Two naphthalene diimides derivatives containing two different (alkyl and alkoxyphenyl) N-substituents were studied, namely, N,N′-bis(sec-butyl)-1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI-s-Bu) and N,N′-bis(4-n-hexyloxyphenyl)-1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI-4-n-OHePh). These compounds are known to exhibit electron transport due to their electron-deficient character evidenced by high electron affinity (EA) values, determined by electrochemical methods and a low-lying lowest unoccupied molecular orbital (LUMO) level, predicted by density functional theory (DFT) calculations. These parameters make the studied organic semiconductors stable in operating conditions and resistant to electron trapping, facilitating, in this manner, electron transport in thin solid layers. Current–voltage characteristics, obtained for the manufactured electron-only devices operating in the low voltage range, yielded mobilities of 4.3 × 10−4 cm2V−1s−1 and 4.6 × 10−6 cm2V−1s−1 for (NDI-s-Bu) and (NDI-4-n-OHePh), respectively. Their electron transport characteristics were described using the drift–diffusion model. The studied organic semiconductors can be considered as excellent candidates for the electron transporting layers in organic photovoltaic cells and light-emitting diodes


2015 ◽  
Vol 107 (15) ◽  
pp. 153504 ◽  
Author(s):  
Sanyam Bajaj ◽  
Omor F. Shoron ◽  
Pil Sung Park ◽  
Sriram Krishnamoorthy ◽  
Fatih Akyol ◽  
...  

2011 ◽  
Vol 335-336 ◽  
pp. 1117-1120
Author(s):  
Yun Yun Chu ◽  
Yu Chou Chao

Dye adsorption on Ti02and electron transport in Ti02film are the two critical factors in determining efficiency of the the dye sensitized solar cell (DSSC). Increasing dye adsorption which increases the light harvesting is usually achieved by using nanoporous or nanoparticle Ti02films. Electron transport is determined by the inter-particle resistance of Ti02film. Electrospinning is a viable method for forming porous structure materials with high surface area. In this study, it was found that electrospinning is able to achieve good solar cell performance due to the high electron transport caused by the pores in the Ti02film.


2002 ◽  
Vol 725 ◽  
Author(s):  
Leonidas C. Palilis ◽  
Hideyuki Murata ◽  
Antti J. Mäkinen ◽  
Manabu Uchida ◽  
Zakya H. Kafafia

AbstractWe report on highly efficient molecular organic light-emitting diodes (MOLEDs) using two novel silole derivatives as emissive and electron transport materials. A silole derivative, namely 2,5-di-(3-biphenyl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PPSPP), which shows blue fluorescence with a high photoluminescence quantum yield of 85% in the solid state, was used as the emissive material. Another silole derivative, namely 2,5-bis-(2‘2“-bipyridin-6-yl)-1,1- dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy), that exhibits a non-dispersive high electron mobility of 2x10-4 cm2/Vsec was used as the electron transport material. MOLEDs using these two siloles and a common hole transport material show blue-green emission centered at 495 nm. This red-shifted electroluminescence (EL) band relative to the blue fluorescence of PPSPP is assigned to a PPSPP:NPB exciplex. A low operating voltage of 4.5 V was measured at a luminance of 100 cd/m2 and an EL quantum efficiency of 3.4% was achieved at 100 A/m2. To our knowledge, this is the highest EL quantum efficiency ever reported based on exciplex emission.


MRS Advances ◽  
2015 ◽  
Vol 1 (7) ◽  
pp. 453-458 ◽  
Author(s):  
Patrick J. Dwyer ◽  
Stephen P. Kelty

ABSTRACTFor efficient charge separation and charge transport in optoelectronic materials, small internal reorganization energies are desired. While many p-type organic semiconductors have been reported with low internal reorganization energies, few n-type materials with low reorganization energy are known. Metal phthalocyanines have long received extensive research attention in the field of organic device electronics due to their highly tunable electronic properties through modification of the molecular periphery. In this study, density functional theory (DFT) calculations are performed on a series of zinc-phthalocyanines (ZnPc) with various degrees of peripheral per-fluoroalkyl (-C3F7) modification. Introduction of the highly electron withdrawing groups on the periphery leads to a lowering in the energy of the molecular frontier orbitals as well as an increase in the electron affinity. Additionally, all molecules studies are found to be most stable in their anionic form, demonstrating their potential as n-type materials. However, the calculated internal reorganization energy slightly increases as a function of peripheral modification. By varying the degree of modification we develop a strategy for obtaining an optimal balance between low reorganization energy and high electron affinity for the development of novel n-type optoelectronic materials.


2020 ◽  
Vol 8 (46) ◽  
pp. 16527-16532
Author(s):  
Lu Ning ◽  
Guangchao Han ◽  
Yuanping Yi

The influence of conformations and packing structures on electron transport was systematically revealed for NDI-based copolymers.


2019 ◽  
Vol 70 (19) ◽  
pp. 5287-5297 ◽  
Author(s):  
Shunsuke Adachi ◽  
Yu Tanaka ◽  
Atsuko Miyagi ◽  
Makoto Kashima ◽  
Ayumi Tezuka ◽  
...  

The high-yielding rice cultivar Takanari has fast photosynthetic induction owing to a high electron transport rate, stomatal conductance, and metabolic flux, leading to high daily carbon gain under fluctuating light.


2019 ◽  
Vol 7 (29) ◽  
pp. 8938-8945 ◽  
Author(s):  
Sudhir Kumar ◽  
Tommaso Marcato ◽  
Serhii I. Vasylevskyi ◽  
Jakub Jagielski ◽  
Katharina M. Fromm ◽  
...  

We report efficient perovskite nanocrystal LEDs based on a new electron transport material, BBIA, possessing high electron mobility of 4.17 × 10−4 cm2 V−1 s−1. BBIA-based devices exhibit a nearly two-fold enhancement than TPBi counterpart.


Sign in / Sign up

Export Citation Format

Share Document