DNAzyme activated protein-scaffolded CRISPR–Cas9 nanoassembly for genome editing

2019 ◽  
Vol 55 (46) ◽  
pp. 6511-6514 ◽  
Author(s):  
Xueli Zhu ◽  
Meng-Mei Lv ◽  
Jin-Wen Liu ◽  
Ru-Qin Yu ◽  
Jian-Hui Jiang

A novel self-assembled protein-scaffolded CRISPR–Cas9 nanosystem for facile and efficient gene editing in a DNAzyme-controlled manner has been developed.

2021 ◽  
Vol 7 (7) ◽  
pp. 505
Author(s):  
Ping Zhang ◽  
Yu Wang ◽  
Chenxi Li ◽  
Xiaoyu Ma ◽  
Lan Ma ◽  
...  

Cryptococcus neoformans and Cryptococcus deneoformans are opportunistic fungal pathogens found worldwide that are utilized to reveal mechanisms of fungal pathogenesis. However, their low homologous recombination frequency has greatly encumbered genetic studies. In preliminary work, we described a ‘suicide’ CRISPR-Cas9 system for use in the efficient gene editing of C. deneoformans, but this has not yet been used in the C. neoformans strain. The procedures involved in constructing vectors are time-consuming, whether they involve restriction enzyme-based cloning of donor DNA or the introduction of a target sequence into the gRNA expression cassette via overlap PCR, as are sophisticated, thus impeding their widespread application. Here, we report the optimized and simplified construction method for all-in-one CRISPR-Cas9 vectors that can be used in C. neoformans and C. deneoformans strains respectively, named pNK003 (Genbank: MW938321) and pRH003 (Genbank: KX977486). Taking several gene manipulations as examples, we also demonstrate the accuracy and efficiency of the new simplified all-in-one CRISPR-Cas9 genome editing tools in both Serotype A and Serotype D strains, as well as their ability to eliminate Cas9 and gDNA cassettes after gene editing. We anticipate that the availability of new vectors that can simplify and streamline the technical steps for all-in-one CRISPR-Cas9 construction could accelerate genetic studies of the Cryptococcus species.


2019 ◽  
Vol 19 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Jinyu Sun ◽  
Jianchu Wang ◽  
Donghui Zheng ◽  
Xiaorong Hu

Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.


2021 ◽  
Author(s):  
Stuti Kujur ◽  
Muthappa Senthil-Kumar ◽  
Rahul Kumar

Abstract The lack of a highly efficient method for delivering reagents for genome engineering to plant cells remains a bottleneck in achieving efficient gene-editing in plant genomes. A suite of recent reports uncovers the newly emerged roles of viral vectors, which can introduce gene-edits in plants with high mutation frequencies through in planta delivery. Here, we focus on the emerging protocols that utilized different approaches for virus-mediated genome editing in model plants. Testing of these protocols and the newly identified hypercompact Casɸ systems is needed to broaden the scope of genome-editing in most plant species, including crops, with minimized reliance on conventional plant transformation methods in the future.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Surbhi Jain ◽  
Saurabh Shukla ◽  
Che Yang ◽  
Meng Zhang ◽  
Zia Fatma ◽  
...  

AbstractGenome editing critically relies on selective recognition of target sites. However, despite recent progress, the underlying search mechanism of genome-editing proteins is not fully understood in the context of cellular chromatin environments. Here, we use single-molecule imaging in live cells to directly study the behavior of CRISPR/Cas9 and TALEN. Our single-molecule imaging of genome-editing proteins reveals that Cas9 is less efficient in heterochromatin than TALEN because Cas9 becomes encumbered by local searches on non-specific sites in these regions. We find up to a fivefold increase in editing efficiency for TALEN compared to Cas9 in heterochromatin regions. Overall, our results show that Cas9 and TALEN use a combination of 3-D and local searches to identify target sites, and the nanoscopic granularity of local search determines the editing outcomes of the genome-editing proteins. Taken together, our results suggest that TALEN is a more efficient gene-editing tool than Cas9 for applications in heterochromatin.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Menglong Chen ◽  
Hui Shi ◽  
Shixue Gou ◽  
Xiaomin Wang ◽  
Lei Li ◽  
...  

Abstract Background Mutations in the DMD gene encoding dystrophin—a critical structural element in muscle cells—cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. Methods In this study, we developed a novel strategy for reframing DMD mutations via CRISPR-mediated large-scale excision of exons 46–54. We compared this approach with other DMD rescue strategies by using DMD patient-derived primary muscle-derived stem cells (DMD-MDSCs). Furthermore, a patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Results Results demonstrated that the large-scale excision of mutant DMD exons showed high efficiency in restoring dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cas12a)-mediated genome editing could correct DMD mutation with the same efficiency as CRISPR-associated protein 9 (Cas9). In addition, more than 10% human DMD muscle fibers expressed dystrophin in the PDX DMD mouse model after treated by the large-scale excision strategies. The restored dystrophin in vivo was functional as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. Conclusions We demonstrated that the clinically relevant CRISPR/Cas9 could restore dystrophin in human muscle cells in vivo in the PDX DMD mouse model. This study demonstrated an approach for the application of gene therapy to other genetic diseases.


2019 ◽  
Vol 20 (15) ◽  
pp. 3623 ◽  
Author(s):  
Tobias Bruegmann ◽  
Khira Deecke ◽  
Matthias Fladung

CRISPR/Cas9 has become one of the most promising techniques for genome editing in plants and works very well in poplars with an Agrobacterium-mediated transformation system. We selected twelve genes, including SOC1, FUL, and their paralogous genes, four NFP-like genes and TOZ19 for three different research topics. The gRNAs were designed for editing, and, together with a constitutively expressed Cas9 nuclease, transferred either into the poplar hybrid Populus × canescens or into P. tremula. The regenerated lines showed different types of editing and revealed several homozygous editing events which are of special interest in perennial species because of limited back-cross ability. Through a time series, we could show that despite the constitutive expression of the Cas9 nuclease, no secondary editing of the target region occurred. Thus, constitutive Cas9 expression does not seem to pose any risk to additional editing events. Based on various criteria, we obtained evidence for a relationship between the structure of gRNA and the efficiency of gene editing. In particular, the GC content, purine residues in the gRNA end, and the free accessibility of the seed region seemed to be highly important for genome editing in poplars. Based on our findings on nine different poplar genes, efficient gRNAs can be designed for future efficient editing applications in poplars.


2021 ◽  
Author(s):  
Xiaoen Huang ◽  
Nian Wang

Sweet orange (Citrus sinensis) is the most economically important species for the citrus industry. However, it is susceptible to many diseases including citrus bacterial canker caused by Xanthomonas citri subsp. citri (Xcc) that triggers devastating effects on citrus production. Conventional breeding has not met the challenge to improve disease resistance of sweet orange due to the long juvenility and other limitations. CRISPR-mediated genome editing has shown promising potentials for genetic improvements of plants. Generation of biallelic/homozygous mutants remains difficult for sweet orange due to low transformation rate, existence of heterozygous alleles for target genes and low biallelic editing efficacy using the CRISPR technology. Here, we report improvements in the CRISPR/Cas9 system for citrus gene editing. Based on the improvements we made previously (dicot codon optimized Cas9, tRNA for multiplexing, a modified sgRNA scaffold with high efficiency, CsU6 to drive sgRNA expression), we further improved our CRISPR/Cas9 system by choosing superior promoters (CmYLCV or CsUbi promoter) to drive Cas9 and optimizing culture temperature. This system was able to generate a biallelic mutation rate of up to 89% for Carrizo citrange and 79% for Hamlin sweet orange. Consequently, this system was used to generate canker resistant Hamlin sweet orange by mutating the effector binding element (EBE) of canker susceptibility gene CsLOB1, which is required for causing canker symptoms by Xcc. Six biallelic Hamlin sweet orange mutant lines in the EBE were generated. The biallelic mutants are resistant to Xcc. Biallelic mutation of the EBE region abolishes the induction of CsLOB1 by Xcc. This study represents a significant improvement in sweet orange gene editing efficacy and generating disease resistant varieties via CRISPR-mediated genome editing. This improvement in citrus genome editing makes genetic studies and manipulations of sweet orange more feasible.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3993-3993
Author(s):  
Linda Yingqi Lin ◽  
Samuele Cancellieri ◽  
Jing Zeng ◽  
Francesco Masillo ◽  
My Anh Nguyen ◽  
...  

Abstract CRISPR gene editing holds great promise to modify somatic genomes to ameliorate disease. In silico prediction of homologous sites coupled with biochemical evaluation of possible genomic off-targets may predict genotoxicity risk of individual gene editing reagents. However, standard computational and biochemical methods focus on reference genomes and do not consider the impact of genetic diversity on off-target potential. Here we developed a web application called CRISPRme that explicitly and efficiently integrates human genetic variant datasets with orthogonal genomic annotations to predict and prioritize off-target sites at scale. The method considers both single-nucleotide variants (SNVs) and indels, accounts for bona fide haplotypes, accepts spacer:protospacer mismatches and bulges, and is suitable for personal genome analyses. We tested the tool with a guide RNA (gRNA) targeting the BCL11A erythroid enhancer that has shown therapeutic promise in clinical trials for sickle cell disease (SCD) and β-thalassemia (Frangoul et al. NEJM 2021). We find that the top predicted off-target site is produced by a non-reference allele common in African-ancestry populations (rs114518452, minor allele frequency (MAF) = 4.5%) that introduces a protospacer adjacent motif (PAM) for SpCas9. We validate that SpCas9 generates indels (~9.6% frequency) and chr2 pericentric inversions in a strictly allele-specific manner in edited CD34+ hematopoietic stem/progenitor cells (HSPCs), although a high-fidelity Cas9 variant mitigates this off-target. This report illustrates how population and private genetic variants should be considered as modifiers of genome editing outcomes. We expect that variant-aware off-target assessment will be required for therapeutic genome editing efforts going forward, including both ongoing and future clinical trials, and we provide a powerful approach for comprehensive off-target prediction. CRISPRme is available at crisprme.di.univr.it. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Dashan Sun

CRISPR system is a powerful gene editing tool which has already been reported to address a variety of gene relevant diseases in different cell lines. However, off-target effect and immune response caused by Cas9 remain two fundamental problems. In our work, time-delayed safety switches are designed based on either artificial ultrasensitivity transmission module or intrinsic time delay in biomolecular activities. By addressing gene therapy efficiency, off-target effect, immune response and drug accumulation, we hope our safety switches may offer inspiration in realizing safe and efficient gene therapy in humans.


Author(s):  
Yoo Kyung Kang ◽  
Ju Hee Lee ◽  
San Hae Im ◽  
Joo Hoon Lee ◽  
Juhee Jeong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document