Hydrothermal synthesis of ZnO nanostructures with controllable morphology change

CrystEngComm ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 1346-1358 ◽  
Author(s):  
Vjaceslavs Gerbreders ◽  
Marina Krasovska ◽  
Eriks Sledevskis ◽  
Andrejs Gerbreders ◽  
Irena Mihailova ◽  
...  

Optimal synthesis parameters for hydrothermal growth of nine ZnO nanostructure morphologies as a durable, homogeneous coating have been determined.

2007 ◽  
Vol 124-126 ◽  
pp. 555-558 ◽  
Author(s):  
Jae Min Jang ◽  
Sung Hak Yi ◽  
Seung Kyu Choi ◽  
Jeong A Kim ◽  
Woo Gwang Jung

3D type flower-like ZnO nanostructure is fabricated on GaN epitaxial layer by hydrothermal synthesis. The formation of ZnO nanostructures is controlled dominantly by pH of the aqueous solution. The microstructure of flower-like ZnO nanostructure was examined by FE-SEM, XRD and FE-TEM. It is found that the shape of ZnO nanostructures are likely flower and chestnut bur shapes. FE-TEM and XRD analysis shows that ZnO nanostructures are single crystalline. Some discussion is made on the mechanism of ZnO growth in solutions with different pH.


2016 ◽  
Vol 52 (53) ◽  
pp. 8231-8234 ◽  
Author(s):  
Wenqiang Li ◽  
Shiyong Gao ◽  
Lin Li ◽  
Shujie Jiao ◽  
Hongtao Li ◽  
...  

Self-assembly of two-dimensional (2D) nanosheets and one-dimensional (1D) nanorods into three-dimensional (3D) double-sided comb-like ZnO nanostructures has been successfully performed on Si and ITO substrates.


2012 ◽  
Vol 12 (10) ◽  
pp. 4829-4833 ◽  
Author(s):  
Xiaobin Xu ◽  
Min Wu ◽  
Michael Asoro ◽  
P. J. Ferreira ◽  
D. L. Fan

2012 ◽  
Vol 501 ◽  
pp. 179-183 ◽  
Author(s):  
Siti Khadijah Mohd Bakhori ◽  
Chuo Ann Ling ◽  
Shahrom Mahmud

The influence of annealing on the optical properties of as-grown ZnO nanostructures prepared in pellets has been investigated by photoluminescence (PL) and Raman spectroscopy. The annealing temperatures of ZnO nanostructure at 600°C, 650°C and 700 °C were conducted in oxygen (O2) and nitrogen (N2) ambient. The near band edge emission (NBE) of samples recorded in the PL spectra demonstrates significant changes on optical signal whereby the NBE is redshifted after O2 annealed and became slightly higher in N2 annealed. Apart from that, weak green luminescence (GL) namely deep band emission (DBE) is observed centre at 532.95 nm (2.23 eV) and 511.00 nm (2.42 eV) for annealed in O2 and N2 respectively, whereas lower DBE observed in as-grown ZnO. On the other hand, Raman shift reveal the phonon mode of the ZnO nanostructures and the E2 (high) mode were downshifted as annealed in O2 ambient, and upshifted in N2 ambient. The downshift and upshift of the E2 (high) mode are correlated to tensile and compressive stress. Moreover the crystallite sizes were calculated from FWHM of XRD and TEM microscopy reveals the nanoplates structure of ZnO nanostructures.


2018 ◽  
Vol 9 ◽  
pp. 2421-2431 ◽  
Author(s):  
Marina Krasovska ◽  
Vjaceslavs Gerbreders ◽  
Irena Mihailova ◽  
Andrejs Ogurcovs ◽  
Eriks Sledevskis ◽  
...  

ZnO nanostructures are promising candidates for use in sensors, especially in electrochemical sensors and biosensors, due to their unique physical and chemical properties, as well as sensitivity and selectivity to several types of contamination, including heavy metal ions. In this work, using the hydrothermal method, nanostructures of ZnO were synthesized in four different morphologies: nanorods, nanoneedles, nanotubes and nanoplates. To determine the peculiarities of adsorption for each morphology, a series of electrochemical measurements were carried out using these nanostructured ZnO coatings on the working electrodes, using aqueous solutions of Pb(NO3)2 and Cd(NO3)2 as analytes with different concentrations. It was found that the sensitivity of the resulting electrochemical sensors depends on the morphology of the ZnO nanostructures: the best results were achieved in the case of porous nanostructures (nanotubes and nanoplates), whereas the lowest sensitivity corresponded to ZnO nanorods with a large diameter (i.e., low surface-to-volume ratio). The efficiency of sedimentation is also related to the electronegativity of adsorbate: it has been shown that all observed ZnO morphologies exhibited significantly higher sensitivity in detecting lead ions compared to cadmium ions.


2021 ◽  
pp. 2150116
Author(s):  
WUTTICHAI SINORNATE ◽  
HIDENORI MIMURA ◽  
WISANU PECHARAPA

In this work, morphological and physical properties of pyramid-like ZnO nanostructures fabricated on Sb-doped ZnO seeding films annealed under different atmospheres are extensively studied. The Sb-doped ZnO seeding films were first prepared by sol–gel spin coating technique onto glass substrate then annealed in nitrogen, air and argon followed by low-temperature hydrothermal process for ZnO nanostructures fabrication. The morphological results exhibit the growth of pyramid-like ZnO nanostructure with increasing density of the ZnO nanostructures. The crystal structure shows pyramid-like ZnO wurtzite hexagonal growth along the c-axis without any impurity phase. The growth of pyramid-like ZnO nanostructures is due to the high growth rate of (002) plane. Photoluminescence spectra exhibit the near-band-edge of all samples while the red emission appears in ZnO nanostructures after the hydrothermal process due to the imperfection in the crystal. The reflectance of ZnO nanostructures covers the visible region with the absorption edge of 375[Formula: see text]nm. The calculation shows the relevant energy band gaps in the range of 3.26–3.28[Formula: see text]eV. The difference in hydrothermally grown ZnO nanostructures is significantly affected by different annealing atmospheres.


Author(s):  
Alisha Mary Manoj ◽  
Leema Rose Viannie ◽  
Chittur Krishnaswamy Subramaniam ◽  
Narayanasamy Arunai Nambi Raj ◽  
Geetha Manivasagam

Sign in / Sign up

Export Citation Format

Share Document