Modulating amyloid fibrillation in a minimalist model peptide by intermolecular disulfide chemical reduction

2019 ◽  
Vol 21 (22) ◽  
pp. 11916-11923 ◽  
Author(s):  
María Alejandra Sequeira ◽  
María Georgina Herrera ◽  
Verónica Isabel Dodero

By switching the molecular information encoded in the minimalist Ac-Phe-Phe-Cys-NH2, it was possible to modulate the organisation of the amyloid fibrils.

2020 ◽  
Vol 21 (20) ◽  
pp. 7671
Author(s):  
Mona Koder Hamid ◽  
Axel Rüter ◽  
Stefan Kuczera ◽  
Ulf Olsson

Understanding the kinetics of peptide self-assembly is important because of the involvement of peptide amyloid fibrils in several neurodegenerative diseases. In this paper, we have studied the dissolution kinetics of self-assembled model peptide fibrils after a dilution quench. Due to the low concentrations involved, the experimental method of choice was isothermal titration calorimetry (ITC). We show that the dissolution is a strikingly slow and reaction-limited process, that can be timescale separated from other rapid processes associated with dilution in the ITC experiment. We argue that the rate-limiting step of dissolution involves the breaking up of inter-peptide β–sheet hydrogen bonds, replacing them with peptide–water hydrogen bonds. Complementary pH experiments revealed that the self-assembly involves partial deprotonation of the peptide molecules.


2021 ◽  
Vol 22 (12) ◽  
pp. 6370
Author(s):  
Bertrand Morel ◽  
María P. Carrasco-Jiménez ◽  
Samuel Jurado ◽  
Francisco Conejero-Lara

The formation of fibrillar aggregates of the amyloid beta peptide (Aβ) in the brain is one of the hallmarks of Alzheimer’s disease (AD). A clear understanding of the different aggregation steps leading to fibrils formation is a keystone in therapeutics discovery. In a recent study, we showed that Aβ40 and Aβ42 form dynamic micellar aggregates above certain critical concentrations, which mediate a fast formation of more stable oligomers, which in the case of Aβ40 are able to evolve towards amyloid fibrils. Here, using different biophysical techniques we investigated the role of different fractions of the Aβ aggregation mixture in the nucleation and fibrillation steps. We show that both processes occur through bimolecular interplay between low molecular weight species (monomer and/or dimer) and larger oligomers. Moreover, we report here a novel self-catalytic mechanism of fibrillation of Aβ40, in which early oligomers generate and deliver low molecular weight amyloid nuclei, which then catalyze the rapid conversion of the oligomers to mature amyloid fibrils. This fibrillation catalytic activity is not present in freshly disaggregated low-molecular weight Aβ40 and is, therefore, a property acquired during the aggregation process. In contrast to Aβ40, we did not observe the same self-catalytic fibrillation in Aβ42 spheroidal oligomers, which could neither be induced to fibrillate by the Aβ40 nuclei. Our results reveal clearly that amyloid fibrillation is a multi-component process, in which dynamic collisions between different interacting species favor the kinetics of amyloid nucleation and growth.


2021 ◽  
Vol 169 ◽  
pp. 342-351
Author(s):  
Malak Abu-Hussien ◽  
Guru Krishnakumar Viswanathan ◽  
Lia Borisover ◽  
Michael Mimouni ◽  
Hamutal Engel ◽  
...  

2019 ◽  
Vol 26 (5) ◽  
pp. 315-323 ◽  
Author(s):  
Vandna Sharma ◽  
Kalyan Sundar Ghosh

Amyloid fibrils are a special class of self-assembled protein molecules, which exhibit various toxic effects in cells. Different physiological disorders such as Alzheimer’s, Parkinson’s, Huntington’s diseases, etc. happen due to amyloid formation and lack of proper cellular mechanism for the removal of fibrils. Therefore, inhibition of amyloid fibrillation will find immense applications to combat the diseases associated with amyloidosis. The development of therapeutics against amyloidosis is definitely challenging and numerous strategies have been followed to find out anti-amyloidogenic molecules. Inhibition of amyloid aggregation of proteins can be achieved either by stabilizing the native conformation or by decreasing the chances of assembly formation by the unfolded/misfolded structures. Various small molecules such as naturally occurring polyphenols, flavonoids, small organic molecules, surfactants, dyes, chaperones, etc. have demonstrated their capability to interrupt the amyloid fibrillation of proteins. In addition to that, in last few years, different nanomaterials were evolved as effective therapeutic inhibitors against amyloidosis. Aromatic and hydrophobic interactions between the partially unfolded protein molecules and the inhibitors had been pointed as a general mechanism for inhibition. In this review article, we are presenting an overview on the inhibition of amyloidosis by using different small molecules (both natural and synthetic origin) as well as nanomaterials for development of pharmaceutical strategies against amyloid diseases.


Author(s):  
D.F. Clapin ◽  
V.J.A. Montpetit

Alzheimer's disease is characterized by the accumulation of abnormal filamentous proteins. The most important of these are amyloid fibrils and paired helical filaments (PHF). PHF are located intraneuronally forming bundles called neurofibrillary tangles. The designation of these structures as "tangles" is appropriate at the light microscopic level. However, localized domains within individual tangles appear to demonstrate a regular spacing which may indicate a liquid crystalline phase. The purpose of this paper is to present a statistical geometric analysis of PHF packing.


2007 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C.W. Kim ◽  
Y.H. Kim ◽  
H.G. Cha ◽  
D.K. Lee ◽  
Y.S. Kang

1990 ◽  
Vol 51 (C1) ◽  
pp. C1-781-C1-787
Author(s):  
B. BONVALOT ◽  
G. DHALENNE ◽  
F. MILLOT ◽  
A. REVCOLEVSCHI

2020 ◽  
Author(s):  
Lucas A. Freeman ◽  
Akachukwu D. Obi ◽  
Haleigh R. Machost ◽  
Andrew Molino ◽  
Asa W. Nichols ◽  
...  

The reduction of the relatively inert carbon–oxygen bonds of CO<sub>2</sub> to access useful CO<sub>2</sub>-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO<sub>2</sub> and the MGE. Herein we report the first successful chemical reduction of CO<sub>2</sub> at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO<sub>2</sub> adduct (<b>1</b>) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO<sub>2</sub>)]<sub>n</sub>(M = Li, Na, K, <b> 2</b>-<b>4</b>) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M<sub>2</sub>(CAAC–CO<sub>2</sub>)]<sub>n </sub>(<b>5</b>-<b>8</b>). It is notable that these crystalline clusters of reduced CO<sub>2</sub> may also be isolated via the “one-pot” reaction of free CO<sub>2</sub> with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products <b>2</b>-<b>8</b> were investigated using a combination of experimental and theoretical methods.<br>


Author(s):  
Ain Uddin ◽  
Weifan Sang ◽  
Yong Gao ◽  
Kyle Plunkett

The synthesis of poly(p-xylylene)s (PPXs) with sidechains containing alkyl bromide functionality, and their post-polymer modification, is described. The PPXs were prepared by a diimide hydrogenation of poly(p-phenylene vinylene)s (PPVs) that were originally synthesized by a Gilch polymerization. The polymer backbone reduction was carried out with hydrazine hydrate in toluene at 80 °C to provide polymers with the sidechain-containing bromide functionality intact. To demonstrate post-polymer modification of the sidechains, the resulting PPX polymers were modified with trimethylamine to form tetraalkylammonium ion functionality and were evaluated as anion conducting membranes. While PPX homopolymers containing tetralkylammonium ions were completely water soluble and not able to form valuable films, PPX copolymers containing mixed tetraalkylammonium ions and hydrophobic chains were capable of film formation and alkaline stability. In addition, an in situ crosslinking process that used N,N,N',N'-tetramethyl-1,6-hexanediamine during the tetraalkylammonium formation of brominated PPX polymers was also evaluated and gave reasonable films with conductivities of ~10 mS-cm-1.


Sign in / Sign up

Export Citation Format

Share Document