High fat diet incorporated with meat proteins changes biomarkers of lipid metabolism, antioxidant activities, and the serum metabolomic profile in Glrx1−/− mice

2020 ◽  
Vol 11 (1) ◽  
pp. 236-252 ◽  
Author(s):  
Muhammad Ijaz Ahmad ◽  
Muhammad Umair Ijaz ◽  
Muzahir Hussain ◽  
Iftikhar Ali Khan ◽  
Noreen Mehmood ◽  
...  

High-fat mutton protein diet may alter lipid-, linoleic acid-, amino acid-, bile acid-, sphingolipid-, glycine-, serine- and glutathione-metabolism pathways in Glrx−/− mice whereas HFF diet ameliorated NAFLD by modifying these pathways.

2019 ◽  
Vol 10 (6) ◽  
pp. 3224-3236 ◽  
Author(s):  
Shiming Huang ◽  
Daorui Pang ◽  
Xiong Li ◽  
Lijun You ◽  
Zhengang Zhao ◽  
...  

This study aimed to evaluate the regulation of lipid metabolism and mechanism of a sulfated polysaccharide from Gracilaria Lemaneiformis (GLP).


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1274
Author(s):  
Li Li ◽  
Manjing Jiang ◽  
Yaohua Li ◽  
Jian Su ◽  
Li Li ◽  
...  

Rubusoside is a natural sweetener and the active component of Rubus suavissimus. The preventive and therapeutic effect of rubusoside on high-fat diet-induced (HFD) serum metabolite changes in golden hamsters was analyzed by 1H-NMR metabolomics to explore the underlying mechanism of lipid metabolism regulation. 1H-NMR serum metabolomics analyses revealed a disturbed amino acid-, sugar-, fat-, and energy metabolism in HFD animals. Animals supplemented with rubusoside can partly reverse the metabolism disorders induced by high-fat diet and exerted good anti-hypertriglyceridemia effect by intervening in some major metabolic pathways, involving amino acid metabolism, synthesis of ketone bodies, as well as choline and 4-hydroxyphenylacetate metabolism. This study indicates that rubusoside can interfere with and normalize high-fat diet-induced metabolic changes in serum and could provide a theoretical basis to establish rubusoside as a potentially therapeutic tool able to revert or prevent lipid metabolism disorders.


2010 ◽  
Vol 39 (5) ◽  
pp. 669-676 ◽  
Author(s):  
Jae-Joon Lee ◽  
Tae-Man Ha ◽  
Yu-Mi Lee ◽  
Ah-Ra Kim ◽  
Myung-Yul Lee

2021 ◽  
Author(s):  
Xue Jiang ◽  
Jie Hao ◽  
Zijian Liu ◽  
Xueting Ma ◽  
Yuxin Feng ◽  
...  

Obesity is characterized by massive fat deposition and is related to a series of metabolic complications, such as insulin resistance (IR) and steatohepatitis. Grifola frondosa (GF) is a basidiomycete fungus...


Author(s):  
Won-Il Choi ◽  
Jae-Hyun Yoon ◽  
Seo-Hyun Choi ◽  
Bu-Nam Jeon ◽  
Hail Kim ◽  
...  

AbstractZbtb7c is a proto-oncoprotein that controls the cell cycle and glucose, glutamate, and lipid metabolism. Zbtb7c expression is increased in the liver and white adipose tissues of aging or high-fat diet-fed mice. Knockout or knockdown of Zbtb7c gene expression inhibits the adipocyte differentiation of 3T3-L1 cells and decreases adipose tissue mass in aging mice. We found that Zbtb7c was a potent transcriptional repressor of SIRT1 and that SIRT1 was derepressed in various tissues of Zbtb7c-KO mice. Mechanistically, Zbtb7c interacted with p53 and bound to the proximal promoter p53RE1 and p53RE2 to repress the SIRT1 gene, in which p53RE2 was particularly critical. Zbtb7c induced p53 to interact with the corepressor mSin3A-HADC1 complex at p53RE. By repressing the SIRT1 gene, Zbtb7c increased the acetylation of Pgc-1α and Pparγ, which resulted in repression or activation of Pgc-1α or Pparγ target genes involved in lipid metabolism. Our study provides a molecular target that can overexpress SIRT1 protein in the liver, pancreas, and adipose tissues, which can be beneficial in the treatment of diabetes, obesity, longevity, etc.


Sign in / Sign up

Export Citation Format

Share Document