Disease-specific protein corona sensor arrays may have disease detection capacity

2019 ◽  
Vol 4 (5) ◽  
pp. 1063-1076 ◽  
Author(s):  
Giulio Caracciolo ◽  
Reihaneh Safavi-Sohi ◽  
Reza Malekzadeh ◽  
Hossein Poustchi ◽  
Mahdi Vasighi ◽  
...  

Protein corona sensor array technology identifies diseases through specific proteomics pattern recognition.

2020 ◽  
Vol 5 (2) ◽  
pp. 372-372
Author(s):  
Giulio Caracciolo ◽  
Reihaneh Safavi-Sohi ◽  
Reza Malekzadeh ◽  
Hossein Poustchi ◽  
Mahdi Vasighi ◽  
...  

Correction for ‘Disease-specific protein corona sensor arrays may have disease detection capacity’ by Giulio Caracciolo et al., Nanoscale Horiz., 2019, 4, 1063–1076.


Nanoscale ◽  
2020 ◽  
Vol 12 (32) ◽  
pp. 16697-16704 ◽  
Author(s):  
Luca Digiacomo ◽  
Kourosh Jafari-Khouzani ◽  
Sara Palchetti ◽  
Daniela Pozzi ◽  
Anna Laura Capriotti ◽  
...  

Following exposure to human plasma nanoparticles are coated with a “disease-specific” protein corona.


2020 ◽  
Vol 501 ◽  
pp. 102-111 ◽  
Author(s):  
María García Vence ◽  
María del Pilar Chantada-Vázquez ◽  
Sergio Vázquez-Estévez ◽  
José Manuel Cameselle-Teijeiro ◽  
Susana B. Bravo ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (19) ◽  
pp. 8978-8994 ◽  
Author(s):  
Mohammad Javad Hajipour ◽  
Jamshid Raheb ◽  
Omid Akhavan ◽  
Sareh Arjmand ◽  
Omid Mashinchian ◽  
...  

2015 ◽  
Author(s):  
M. Rahman ◽  
M. Mahmoudi

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas B. G. Poulsen ◽  
Dres Damgaard ◽  
Malene M. Jørgensen ◽  
Ladislav Senolt ◽  
Jonathan M. Blackburn ◽  
...  

AbstractThe presence or absence of autoantibodies against citrullinated proteins (ACPAs) distinguishes two main groups of rheumatoid arthritis (RA) patients with different etiologies, prognoses, disease severities, and, presumably, disease pathogenesis. The heterogeneous responses of RA patients to various biologics, even among ACPA-positive patients, emphasize the need for further stratification of the patients. We used high-density protein array technology for fingerprinting of ACPA reactivity. Identification of the proteome recognized by ACPAs may be a step to stratify RA patients according to immune reactivity. Pooled plasma samples from 10 anti-CCP-negative and 15 anti-CCP-positive RA patients were assessed for ACPA content using a modified protein microarray containing 1631 different natively folded proteins citrullinated in situ by protein arginine deiminases (PADs) 2 and PAD4. IgG antibodies from anti-CCP-positive RA plasma showed high-intensity binding to 87 proteins citrullinated by PAD2 and 99 proteins citrullinated by PAD4 without binding significantly to the corresponding native proteins. Curiously, the binding of IgG antibodies in anti-CCP-negative plasma was also enhanced by PAD2- and PAD4-mediated citrullination of 29 and 26 proteins, respectively. For only four proteins, significantly more ACPA binding occurred after citrullination with PAD2 compared to citrullination with PAD4, while the opposite was true for one protein. We demonstrate that PAD2 and PAD4 are equally efficient in generating citrullinated autoantigens recognized by ACPAs. Patterns of proteins recognized by ACPAs may serve as a future diagnostic tool for further subtyping of RA patients.


2021 ◽  
Vol 16 (2) ◽  
pp. 255-263
Author(s):  
Qinghong Wu ◽  
Wanying Zhang

Due to its high sensitivity, low price and fast response speed, gas sensors based on metal oxide nanomate-rials have attracted many researchers to modify and explore the materials. First, pure indium oxide (In2O3) nanotubes (NTs)/porous NTs (PNTs) and Ho doped In2O3 NTs/PNTs are prepared by electrospinning and calcination. Then, based on the prepared nanomaterials, the 6-channel sensor array is obtained and used in the electronic nose sensing system for wine product identification. The system obtains the frequency signals of different liquor products by means of 6-channel sensor array, analyzes the extracted electronic signal characteristic information by means of ordinary least squares, and introduces the pattern recognition method of moving average and linear discriminant to identify liquor products. In the experiment, compared with pure In2O3 NTs sensor, pure In2O3 PNTs sensor has higher sensitivity to 100 ppm ethanol gas, and the sensitivity is further improved after mixing Ho. Among them, 6 mol% Ho + In2O3 PNTs have the highest sensitivity and the shortest response time; based on the electronic nose system composed of prepared nanomaterial sensor array, frequency signals of different Wu Liang Ye wines are collected. With the extension of acquisition time, the corresponding frequency first decreases and then becomes stable; the extracted liquor characteristic signal is projected into two-dimensional space and three-dimensional space. The results show that the pattern recognition system based on this method can extract the characteristic signals of liquor products and distinguish them.


Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 45 ◽  
Author(s):  
Alphus Dan Wilson

The development of electronic-nose (e-nose) technologies for disease diagnostics was initiated in the biomedical field for detection of biotic (microbial) causes of human diseases during the mid-1980s. The use of e-nose devices for disease-diagnostic applications subsequently was extended to plant and animal hosts through the invention of new gas-sensing instrument types and disease-detection methods with sensor arrays developed and adapted for additional host types and chemical classes of volatile organic compounds (VOCs) closely associated with individual diseases. Considerable progress in animal disease detection using e-noses in combination with metabolomics has been accomplished in the field of veterinary medicine with new important discoveries of biomarker metabolites and aroma profiles for major infectious diseases of livestock, wildlife, and fish from both terrestrial and aquaculture pathology research. Progress in the discovery of new e-nose technologies developed for biomedical applications has exploded with new information and methods for diagnostic sampling and disease detection, identification of key chemical disease biomarkers, improvements in sensor designs, algorithms for discriminant analysis, and greater, more widespread testing of efficacy in clinical trials. This review summarizes progressive advancements in utilizing these specialized gas-sensing devices for numerous diagnostic applications involving noninvasive early detections of plant, animal, and human diseases.


2015 ◽  
Vol 73 (6) ◽  
Author(s):  
Ling En Hong ◽  
Ruzairi Hj. Abdul Rahim ◽  
Anita Ahmad ◽  
Mohd Amri Md. Yunus ◽  
Khairul Hamimah Aba ◽  
...  

This paper will provide a fundamental understanding of one of the most commonly used tomography, Electrical Resistance Tomography (ERT). Unlike the other tomography systems, ERT displayed conductivity distribution in the Region of Interest (ROI) and commonly associated to Sensitivity Theorem in their image reconstruction. The fundamental construction of ERT includes a sensor array spaced equally around the imaged object periphery, a Data Acquisition (DAQ), image reconstruction and display system. Four ERT data collection strategies that will be discussed are Adjacent Strategy, Opposite Strategy, Diagonal Strategy and Conducting Boundary Strategy. We will also explain briefly on some of the possible Data Acquisition System (DAQ), forward and inverse problems, different arrangements for conducting and non-conducting pipes and factors that influence sensor arrays selections. 


2018 ◽  
Vol 29 (4) ◽  
pp. e21586 ◽  
Author(s):  
Muhammad Tayyab ◽  
Mohammad S. Sharawi ◽  
Atif Shamim ◽  
Abdelsalam Al-Sarkhi

Sign in / Sign up

Export Citation Format

Share Document