scholarly journals A nanopillar array on black titanium prepared by reactive ion etching augments cardiomyogenic commitment of stem cells

Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20766-20776 ◽  
Author(s):  
Lopamudra Das Ghosh ◽  
Jafar Hasan ◽  
Aditi Jain ◽  
Nagalingam R. Sundaresan ◽  
Kaushik Chatterjee

The array highly efficiently promotes cardiomyogenic commitment of stem cells via integrin-mediated signalling compared to the smooth surface and is a potential platform for ex vivo differentiation of stem cells for cell therapy in cardiac tissue repair and regeneration.

2012 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Christian Homsy ◽  

The scale of cardiac diseases, and in particular heart failure and acute myocardial infarction, emphasises the need for radically new approaches, such as cell therapy, to address the underlying cause of the disease, the loss of functional myocardium. Stem cell-based therapies, whether through transplanted cells or directing innate repair, may provide regenerative approaches to cardiac diseases by halting, or even reversing, the events responsible for progression of organ failure. Cardio3 BioSciences, a leading Belgian biotechnology company focused on the discovery and development of regenerative and protective therapies for the treatment of cardiac disease, was founded in this context in 2004. The company is developing a highly innovative cell therapy approach based on a platform designed to reprogramme the patient’s own stem cells into cardiac progenitor cells. The underlying rationale behind this approach is that, in order to reconstruct cardiac tissue, stem cells need to be specific to cardiac tissue. The key is therefore to provide cardiac-specific progenitor cells to the failing heart to induce cardiac repair.


2013 ◽  
Vol 20 (28) ◽  
pp. 3429-3447 ◽  
Author(s):  
Stefania Pagliari ◽  
Sara Romanazzo ◽  
Diogo Mosqueira ◽  
Perpetua Pinto-do-O ◽  
Takao Aoyagi ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2472
Author(s):  
Carl Randall Harrell ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSCs) are self-renewable, rapidly proliferating, multipotent stem cells which reside in almost all post-natal tissues. MSCs possess potent immunoregulatory properties and, in juxtacrine and paracrine manner, modulate phenotype and function of all immune cells that participate in tissue repair and regeneration. Additionally, MSCs produce various pro-angiogenic factors and promote neo-vascularization in healing tissues, contributing to their enhanced repair and regeneration. In this review article, we summarized current knowledge about molecular mechanisms that regulate the crosstalk between MSCs and immune cells in tissue repair and regeneration.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Pascual Martínez-Peinado ◽  
Sandra Pascual-García ◽  
Enrique Roche ◽  
José Miguel Sempere-Ortells

Mesenchymal stem cells (MSC) are a widely used population in cell therapy for their ability to differentiate into distinct tissues and more lately, for their immunomodulatory properties. However, the use of heterogeneous populations could be responsible for the nondesired outcomes reflected in the literature. Here, we analyse the different capacities of five one-cell-derived MSC clones to exert their immunomodulation ex vivo. We assessed proliferation assays in cocultures of MSC clones and purified cluster of differentiation (CD)3+, CD4+, or CD8+ lymphocytes; analysed the regulatory T (Treg) cells fold change rate; determined the effects on viability of peripheral blood mononuclear cells (PBMC); and also measured the coculture cytokine profiles (Th1/Th2). Conditioned media (CM) of different clones were also used to perform both proliferation assays and to analyse Treg fold change. The five clones analysed in this work were able to generate heterogeneous environments. Different clones inhibited proliferation of CD3+ and CD4+ lymphocytes, with different intensities. Surprisingly, all clones promoted proliferation of CD8+ lymphocytes. Different MSC clones and their CM were able to increase the number of Treg with different intensities. Finally, different clones also promoted different effects on the viability of PBMC treated with ultraviolet light. Considering all these data together, it seems that different clones, even from the same donor, can promote a wide spectrum of responses from anti-inflammatory to proinflammatory character. This fact may be important to standardise the design of personalized cell therapy protocols, thus diminishing the aforementioned undesired outcomes existing nowadays in this type of therapies.


2020 ◽  
Vol 21 (5) ◽  
pp. 1638 ◽  
Author(s):  
Emilia Di Giovanni ◽  
Silvia Buonvino ◽  
Ivano Amelio ◽  
Sonia Melino

The endogenous gasotransmitter H2S plays an important role in the central nervous, respiratory and cardiovascular systems. Accordingly, slow-releasing H2S donors are powerful tools for basic studies and innovative pharmaco-therapeutic agents for cardiovascular and neurodegenerative diseases. Nonetheless, the effects of H2S-releasing agents on the growth of stem cells have not been fully investigated. H2S preconditioning can enhance mesenchymal stem cell survival after post-ischaemic myocardial implantation; therefore, stem cell therapy combined with H2S may be relevant in cell-based therapy for regenerative medicine. Here, we studied the effects of slow-releasing H2S agents on the cell growth and differentiation of cardiac Lin− Sca1+ human mesenchymal stem cells (cMSC) and on normal human dermal fibroblasts (NHDF). In particular, we investigated the effects of water-soluble GSH–garlic conjugates (GSGa) on cMSC compared to other H2S-releasing agents, such as Na2S and GYY4137. GSGa treatment of cMSC and NHDF increased their cell proliferation and migration in a concentration dependent manner with respect to the control. GSGa treatment promoted an upregulation of the expression of proteins involved in oxidative stress protection, cell–cell adhesion and commitment to differentiation. These results highlight the effects of H2S-natural donors as biochemical factors that promote MSC homing, increasing their safety profile and efficacy after transplantation, and the value of these donors in developing functional 3D-stem cell delivery systems for cardiac muscle tissue repair and regeneration.


2017 ◽  
Vol 53 (02) ◽  
pp. 104-120 ◽  
Author(s):  
Manisha Singh ◽  
Suchi Gupta ◽  
Sonali Rawat ◽  
Swati Midha ◽  
Krishan Gopal Jain ◽  
...  

ABSTRACTCell replacement therapy holds a promising future in the treatment of degenerative diseases related to neuronal, cardiac and bone tissues. In such kind of diseases, there is a progressive loss of specific types of cells. Currently the most upcoming and trusted cell candidate is Mesenchymal Stem Cells (MSCs) as these cells are easy to isolate from the tissue, easy to maintain and expand and no ethical concerns are linked. MSCs can be obtained from a number of sources like bone marrow, umbilical cord blood, umbilical cord, dental pulp, adipose tissues, etc. MSCs help in tissue repair and regeneration by various mechanisms of action like cell differentiation, immunomodulation, paracrine effect, etc. The future of regenerative medicine lies in tissue engineering and exploiting various properties to yield maximum output. In the current review article, we have targeted the repair and regeneration mechanisms of MSCs in neurodegenerative diseases, cardiac diseases and those related to bones. Yet there is a lot to understand, discover and then understand again about the molecular mechanisms of MSCs and then applying this knowledge in developing the therapy to get maximum repair and regeneration of concerned tissue and in turn the recovery of the patient.


2012 ◽  
Vol 132 (6) ◽  
pp. 1538-1541 ◽  
Author(s):  
Vincent Falanga

Author(s):  
Renata Szydlak

Nowadays, mesenchymal stem cells (MSCs) are essential players in cellular therapy and regenerative medicine. MSCs are used to treat cardiac disorders by intramyocardial injection or injection into the bloodstream. Therefore, a premise of successful MSC-based therapy is that the cells reach the site of injury and home the damaged tissue. In response to inflammatory conditions, MSCs can potentially move into the place of injury and colonize damaged tissues, where they participate in their regeneration. This review presents the current knowledge of the mechanisms of MSCs migration and target tissue homing in the field of cardiovascular therapies.


Sign in / Sign up

Export Citation Format

Share Document