Achieving a superlubricating ohmic sliding electrical contact via a 2D heterointerface: a computational investigation

Nanoscale ◽  
2020 ◽  
Vol 12 (14) ◽  
pp. 7857-7863 ◽  
Author(s):  
Aisheng Song ◽  
Lei Gao ◽  
Jie Zhang ◽  
Xiao Liu ◽  
Yuan-Zhong Hu ◽  
...  

The van der Waals heterojunction with superlubricity and high electron transport efficiency is proposed as the new generation of sliding electrical contact.

2019 ◽  
pp. 101-109 ◽  
Author(s):  
M. I. Aleutdinova ◽  
V. V. Fadin ◽  
Yu. P. Mironov

The possibility of creating a wear-resistant dry sliding electrical contact tungsten/steel was studied. It was shown that tungsten caused severe wear of the quenched steel counterbody due to unlimited plastic flow of its surface layer at a current density up to 150 A/cm2 . This indicated the impossibility of achieving satisfactory characteristics of such a contact. Low electrical conductivity and wear resistance of the contact tungsten/steel were presented in comparison with the known high copper/steel contact characteristics under the same conditions. X-ray phase analysis data of the steel sliding surfaces made it possible to state that the cause of the unsatisfactory sliding of tungsten was the absence of the necessary concentration of FeO oxide on the sliding surface of the steel. 


2015 ◽  
Vol 107 (15) ◽  
pp. 153504 ◽  
Author(s):  
Sanyam Bajaj ◽  
Omor F. Shoron ◽  
Pil Sung Park ◽  
Sriram Krishnamoorthy ◽  
Fatih Akyol ◽  
...  

2011 ◽  
Vol 335-336 ◽  
pp. 1117-1120
Author(s):  
Yun Yun Chu ◽  
Yu Chou Chao

Dye adsorption on Ti02and electron transport in Ti02film are the two critical factors in determining efficiency of the the dye sensitized solar cell (DSSC). Increasing dye adsorption which increases the light harvesting is usually achieved by using nanoporous or nanoparticle Ti02films. Electron transport is determined by the inter-particle resistance of Ti02film. Electrospinning is a viable method for forming porous structure materials with high surface area. In this study, it was found that electrospinning is able to achieve good solar cell performance due to the high electron transport caused by the pores in the Ti02film.


2020 ◽  
Vol 22 (25) ◽  
pp. 14088-14098
Author(s):  
Amine Slassi ◽  
David Cornil ◽  
Jérôme Cornil

The rise of van der Waals hetero-structures based on transition metal dichalcogenides (TMDs) opens the door to a new generation of optoelectronic devices.


2002 ◽  
Vol 725 ◽  
Author(s):  
Leonidas C. Palilis ◽  
Hideyuki Murata ◽  
Antti J. Mäkinen ◽  
Manabu Uchida ◽  
Zakya H. Kafafia

AbstractWe report on highly efficient molecular organic light-emitting diodes (MOLEDs) using two novel silole derivatives as emissive and electron transport materials. A silole derivative, namely 2,5-di-(3-biphenyl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PPSPP), which shows blue fluorescence with a high photoluminescence quantum yield of 85% in the solid state, was used as the emissive material. Another silole derivative, namely 2,5-bis-(2‘2“-bipyridin-6-yl)-1,1- dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy), that exhibits a non-dispersive high electron mobility of 2x10-4 cm2/Vsec was used as the electron transport material. MOLEDs using these two siloles and a common hole transport material show blue-green emission centered at 495 nm. This red-shifted electroluminescence (EL) band relative to the blue fluorescence of PPSPP is assigned to a PPSPP:NPB exciplex. A low operating voltage of 4.5 V was measured at a luminance of 100 cd/m2 and an EL quantum efficiency of 3.4% was achieved at 100 A/m2. To our knowledge, this is the highest EL quantum efficiency ever reported based on exciplex emission.


2020 ◽  
Vol 8 (46) ◽  
pp. 16527-16532
Author(s):  
Lu Ning ◽  
Guangchao Han ◽  
Yuanping Yi

The influence of conformations and packing structures on electron transport was systematically revealed for NDI-based copolymers.


Sign in / Sign up

Export Citation Format

Share Document