scholarly journals Impact of asphalt aging temperature on chemo-mechanics

RSC Advances ◽  
2019 ◽  
Vol 9 (21) ◽  
pp. 11602-11613 ◽  
Author(s):  
Poulikakos L. D. ◽  
Cannone Falchetto A. ◽  
Wang D. ◽  
Porot L. ◽  
Hofko B.

A link between the chemistry and rheology of bituminous binders with a focus on short-term aging temperature is proposed. This link is made using a rheological aging index (RAI), the crossover temperature and a chemical aging index (CAI).

2014 ◽  
Vol 70 (7) ◽  
Author(s):  
Mohamad Yusri Aman ◽  
Zulkurnain Shahadan ◽  
Munzilah Md. Ruhani ◽  
Rosnawati Buhari

This paper focuses on physical and rheological properties of virgin asphalt binder blended with different percentage of Rediset® content. The rheological properties of the Rediset® modified binders were characterized before and after being subjected to short-term aging using rotational viscometer (RV) and dynamic shear rheometer (DSR) according to SuperpaveTM test protocols. The results indicated that the penetration and softening point were consistently decreased and increased, respectively for unaged and short-term aged samples. The penetration index (PI) and viscosity aging index (VAI) were increased as the Rediset® modified binders aged and showed a high significance correlation. The addition of Rediset® in asphalt binder exhibited change in binder rheology after subjected to short-term aged which influenced the rutting parameter. A statistical analysis showed that Rediset® used as warm asphalt additive had significantly increased the G*/Sin δ parameter which indicated greater resistance to rutting.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6229
Author(s):  
Krzysztof Maciejewski ◽  
Piotr Ramiączek ◽  
Eva Remisova

The presented study explores the effects of decreased temperatures utilized in rolling thin-film oven (RTFOT) laboratory short-term ageing of asphalt binders based on 35/50- and 50/70-penetration paving-grade bitumen. Additionally, the effects of three additives used with these binders at different concentrations are evaluated: liquid anti-stripping agent, liquid warm-mix additive, and solid warm-mix additive. The resulting asphalt binders were subjected to basic (penetration at 25 °C, softening point, dynamic viscosity) and functional high-temperature characterization (G*/sin(δ), high critical temperature, non-recoverable creep compliance). It was found that the decreased short-term ageing temperatures may detrimentally impact the high-temperature grade of bituminous binders, but this effect can be mitigated by the use of appropriate additives. What is more, it was found that bituminous binders may respond differently to the aforementioned factors. Based on the results, it is advised that asphalt binders intended for use in warm-mix asphalts should be thoroughly tested to appropriately simulate the mixture production process and its effects.


2017 ◽  
Vol 24 ◽  
pp. 48-54
Author(s):  
Allam Musbah Al Allam ◽  
Mohd Idrus bin Masirin ◽  
Ahmad Suliman B. Ali

This study investigates the effect of oxidation aging on the physical properties of asphalt binder modified by various ratios of soft clay contents. The rheological properties of soft clay modified asphalt binders were performance under unaged and short-term aged, and being applied by using rotational viscometer and dynamic shear rheometer. Therefore, the results indicated that the physical properties of penetration and softening point were consistently reduced and increased, respectively for unaged and short-term aged specimens. The penetration index and viscosity aging index were increased as the soft clay modified binders aged and showed a high significance correlation. It also has the lowest susceptibility for the temperature susceptibility.


Author(s):  
Elizabeth Braswell ◽  
Nooralhuda F. Saleh ◽  
Michael Elwardany ◽  
Farhad Yousefi Rad ◽  
Cassie Castorena ◽  
...  

This paper refines the oxidation kinetics-based approach originally proposed in the NCHRP 09-54 project to determine the laboratory aging durations at 95°C that best reflect the effects of time, climate, and depth on loose asphalt mixtures. Aging durations that match the field aging at various pavement depths were determined in this study for asphalt mixtures, including warm-mix asphalt (WMA), polymer-modified asphalt (PMA), and reclaimed asphalt pavement (RAP). Here, the laboratory aging durations were used to calibrate a climatic aging index to prescribe the laboratory aging duration, given hourly pavement temperature history obtained from Enhanced Integrated Climatic Model analysis of the Modern Era Retrospective-Analysis for Research and Applications, Version 2 weather data. The recalibrated procedure determines the required laboratory aging durations with reasonable accuracy for virgin hot-mix asphalt (HMA) and WMA mixtures. From the recalibrated results, no variations were found with regard to the laboratory aging durations for WMA materials compared with HMA materials, but there were differences between the RAP and non-RAP mixtures. In some instances, the short-term aged RAP mixtures that were prepared according to AASHTO R 30 exceeded the aging level of 4-year-old field cores, suggesting that refinement of this standard short-term aging procedure may be necessary. Approximately half of the PMA sections evaluated exhibited outlier behavior that could have been caused by the unrealistically harsh thermal history of the field projects from which the cores were acquired.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5870
Author(s):  
Serge-Bertrand Adiko ◽  
Alexey A. Gureev ◽  
Olga N. Voytenko ◽  
Alexey V. Korotkov

This study aimed to evaluate the possibility of using Fourier Transform Infrared (FTIR) spectroscopy to track binders produced by three different plants: plants A, B, and C. The work included the quality assessment of 80 bituminous materials graded as BND 70/100 and 100/130 according to GOST 33133 (Russian interstate standard) and chemical analyses using FTIR spectroscopy. FTIR analyses were conducted before and after short-term ageing in a Rolling Thin Film Oven Test (RTFOT). Thus, the number of binder samples was multiplied by two (2) for a final total of 160 infrared (IR) spectra. All infrared spectra were normalised to ensure the reliability of results, and the standard deviation and variance coefficient were included. The principal purpose of the present work was to track the origin and the ageing extent of the bituminous binders under study.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1039 ◽  
Author(s):  
Bo Li ◽  
Jianing Zhou ◽  
Zhihao Zhang ◽  
Xiaolong Yang ◽  
Yu Wu

Effective approaches are required to be developed to solve the poor compatibility and thermal stability problems of crumb rubber-modified asphalt (CRMA). This study focuses on a method called microwave activation. However, seldom researches pay attention to the properties of MACRMA after aging. The objective of this study was to prepare microwave-activated CRMA (MACRMA) and investigate the performance of asphalt after aging. The samples were subjected to thin-film oven test (TFOT) at different times and temperatures. The effect of heat aging on the properties of MACRMA was evaluated by three indicator tests: viscosity, dynamic shear rheology test (DSR), and repeat creep recovery test (RCRT). The test results indicated that the MACRMA after two aging conditions had noticeably lower performance values (e.g., penetration, ductility) compared to unaged samples, and thus, the need to control temperature and time for mixing and construction was verified to be important. In addition, the G*/sin δ and phase angle values were largely influenced by the TFOT aging temperature and time. The MACRMA’s ability to recover was improved after aging. Compared with the aging temperature, the aging time had a more significant effect on the deformation and recovery ability of MACRMA.


2020 ◽  
Vol 12 (15) ◽  
pp. 6181
Author(s):  
Seyed Reza Omranian ◽  
Meor Othman Hamzah ◽  
Georgios Pipintakos ◽  
Wim Van den bergh ◽  
Cedric Vuye ◽  
...  

Several factors affect asphalt binder and mixture characteristics. This makes pavement performance assessment a mounting task. This paper evaluates the effects of short-term aging on compactibility and volumetric properties of asphalt mixtures using the Response Surface Method (RSM). Three different binders were utilized to produce mixtures (type AC-14). Aging temperature, aging duration, and duration in a climate chamber with increased humidity and ultraviolet lighting were considered as independent variables (IV), while compactibility and volumetric properties were regarded as dependent variables (DV). The findings revealed significant impacts of aging temperature and duration on compactibility, air voids, voids in mineral aggregate, and voids filled with asphalt, while duration in the climate chamber exhibited no significant influence on the DVs. The effects of IVs on DVs varied by binder type. This was achieved through an elaborate statistical analysis. The study, finally, demonstrates the RSM’s potential to predict changes in responses from mathematical equations—converging with the experimental observation—with excellent accuracy. Potentially, pavement contractors can use this method by replacing haulage duration and mixtures’ temperatures during paving in the developed models. It enables them to predict the pavement density and adjust pressure as well as the number of roller passes to achieve the desired requirements.


2015 ◽  
Vol 44 (1) ◽  
pp. 20150031 ◽  
Author(s):  
Ohsun Kwon ◽  
Sungun Kim ◽  
Hyungbae Kim ◽  
Joong Hyun Han ◽  
Kwang W. Kim

Sign in / Sign up

Export Citation Format

Share Document