scholarly journals Nano-aggregates of furan-2-carbohydrazide derivatives displaying enhanced emission with a bathochromic shift

RSC Advances ◽  
2019 ◽  
Vol 9 (62) ◽  
pp. 36097-36102
Author(s):  
Ge Ding ◽  
Xinchao Wang ◽  
Xiujuan Li ◽  
Hongpan Liu ◽  
Lunxiang Wang ◽  
...  

C1 exhibited obvious AIE phenomena. A change from a lack of fluorescence emission to the emission of yellow-green light under a UV lamp was observed upon the inclusion of water in the solvent.

2018 ◽  
Vol 4 (4) ◽  
pp. 59 ◽  
Author(s):  
Ajit Kumar Kharwar ◽  
Arpan Mondal ◽  
Sanjit Konar

Herein, we report a novel Tb(III) single chain magnet with the chemical formulae [Tb(μ-OH2)(phen)(μ-OH)(nb)2]n by using 4-nitrobenzoic acid (Hnb) and 1,10-phenanthroline (phen) as ligand system. The single-crystal X-ray diffraction reveals that 4-nitrobenzoic acid acts as a monodentate ligand, water and hydroxyl ions are the bridging ligand and the phen serves as a bidentate chelating ligand. The static magnetic susceptibility measurement (from 2 K to 300 K) shows ferromagnetic interaction at very low temperature (below 6 K). The alternating current (AC) susceptibility data of the complex show temperature and frequency dependence under an applied 2000 Oe DC (direct current) field. The phen moiety behaves as an antenna and enables the complex to show the green light fluorescence emission by absorption-energy transfer-emission mechanism. To calculate the exchange interaction, broken symmetry density functional theory (BS-DFT) calculations have been performed on a model compound which also reveals weak ferromagnetic interaction. Ab initio calculations reveals the anisotropic nature (gz = 15.8, gy, gy = 0) of the metal centre and the quasi doublet nature of ground state with small energy gap and that is well separated from the next excited energy state.


2015 ◽  
Vol 19 (07) ◽  
pp. 887-902 ◽  
Author(s):  
Nuonuo Zhang ◽  
Kanumuri Ramesh Reddy ◽  
Jianbing Jiang ◽  
Masahiko Taniguchi ◽  
Roger D. Sommer ◽  
...  

The ability to introduce substituents at designated sites about the perimeter of synthetic bacteriochlorins – analogs of bacteriochlorophylls of bacterial photosynthesis – remains a subject of ongoing study. Here, the self-condensation of a dihydrodipyrrin-dioxolane affords a 5-[2-(trimethylsiloxy)ethoxy]bacteriochlorin. Like a 5-methoxybacteriochlorin, the latter undergoes regioselective bromination at the 15-position, directed by the distal 5-alkoxy group. On the other hand, attempted bromination of a bacteriochlorin bearing a 5-(2-hydroxyethoxy) group resulted in intramolecular ether formation with the adjacent β-pyrroline position to give an annulated dioxepine ring (confirmed by single-crystal X-ray structural analysis). The hydroxyethoxy group at the 5-position can be derivatized by acylation. In addition, the installation of auxochromes (methoxycarbonyl, phenylethynyl) at the β-pyrrole rings causes a substantial bathochromic shift of the long-wavelength absorption band (812 nm) and companion fluorescence emission band (821 nm). Taken together, the modification of the 5-substituent complements existing methods for installing a single substituent on the bacteriochlorin macrocycle.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4546
Author(s):  
Eva Molnar ◽  
Emese Gál ◽  
Luiza Găină ◽  
Castelia Cristea ◽  
Luminița Silaghi-Dumitrescu

Synthesis, structural characterization and photophysical properties for a series of new trans-A2B2- and A3B-type ethynyl functionalized meso-phenothiazinyl-phenyl porphyrin derivatives are described. The new compounds displayed the characteristic porphyrin absorption spectra slightly modified by weak auxochromic effects of the substituents and fluorescence emission in the range of 651–659 nm with 11–25% quantum yields. The changes recorded in the UV-vis absorption spectra in the presence of trifluoroacetic acid (TFA) are consistent with the protonation of the two internal nitrogen atoms of the free-base porphyrin (19 nm bathochromic shift of the strong Soret band and one long wave absorption maxima situated in the range of 665–695 nm). Protonation of the phenothiazine substituents required increased amounts of TFA and produced a distinct hypsochromic shift of the long wave absorption maxima. The density functional theory (DFT) calculations of a porphyrin dication pointed out a saddle-distorted porphyrin ring as the ground-state geometry.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2352
Author(s):  
Mauro Formica ◽  
Vieri Fusi ◽  
Daniele Paderni ◽  
Gianluca Ambrosi ◽  
Mario Inclán ◽  
...  

A scorpionate Zn2+ complex, constituted by a macrocyclic pyridinophane core attached to a pendant arm containing a fluorescent pyridyl-oxadiazole-phenyl unit (PyPD), has been shown to selectively recognize chloride anions, giving rise to changes in fluorescence emission that are clearly visible under a 365 nm UV lamp. This recognition event has been studied by means of absorption, fluorescence, and NMR spectroscopy, and it involves the intramolecular displacement of the PyPD unit by chloride anions. Moreover, since the chromophore is not removed from the system after the recognition event, the fluorescence can readily be restored by elimination of the bound chloride anion.


2020 ◽  
Vol 128 (12) ◽  
pp. 1864
Author(s):  
S. Joshi

Photophysical properties of a supramolecular amphiphile of calix[4]arene having benzofurazan moiety at the lower rim, L has been studied. Electronic absorption and fluorescence spectra of L have been recorded in wide range of solvents of different polarities and data were used to study solvatochromic properties. The ground state and the excited state dipole moment of L were estimated from the Bakhshiev's and Bilot-Kawaski's equations. High value of dipole moment is observed for excited state as compared to ground state value and this is attributed to more polar excited state of molecule. Also, fluorescence emission peak undergoes a bathochromic shift with increase in the polarity of the solvent, confirming π-> π* transition. Scanning electron microscopy reveals that the aggregation of L is increased on going from the polar to non polar solvents. Keywords: solvatochromism, benzofurazan, dipole moment, quantum yield, absorption, fluoresence.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1210 ◽  
Author(s):  
Justo Cabrera-González ◽  
Mahdi Chaari ◽  
Francesc Teixidor ◽  
Clara Viñas ◽  
Rosario Núñez

High boron content systems were prepared by the peripheral functionalisation of 1,3,5-triphenylbenzene (TPB) and octavinylsilsesquioxane (OVS) with two different anionic boron clusters: closo-dodecaborate (B12) and cobaltabisdicarbollide (COSAN). TPB was successfully decorated with three cluster units by an oxonium ring-opening reaction, while OVS was bonded to eight clusters by catalysed metathesis cross-coupling. The resulting compounds were spectroscopically characterised, and their solution-state photophysical properties analysed. For TPB, the presence of COSAN dramatically quenches the fluorescence emission (λem = 369 nm; ΦF = 0.8%), while B12-substituted TPB shows an appreciable emission efficiency (λem = 394 nm; ΦF = 12.8%). For octasilsesquioxanes, the presence of either COSAN or B12 seems to be responsible for ∼80 nm bathochromic shift with respect to the core emission, but both cases show low emission fluorescence (ΦF = 1.4–1.8%). In addition, a remarkable improvement of the thermal stability of OVS was observed after its functionalisation with these boron clusters.


Parasitology ◽  
1984 ◽  
Vol 88 (1) ◽  
pp. 13-25 ◽  
Author(s):  
A. W. C. A. Cornelissen ◽  
J. P. Overdulve ◽  
M. Van Der Ploeg

SUMMARYFeulgen-pararosaniline(SO2) staining was performed on stages in the life-cycle of Isospora (Toxoplasma) gondii, Eimeria tenella, Sarcocystis cruzi and Plasmodium berghei. The fluorescence emission of the stained DNA in nuclei of these stages was examined and compared with absorption microscopy measurements at 560 nm (green light) of the same specimens. Accurate identification of single cells, and especially discrimination between young schizonts and young gamonts was difficult after Feulgen staining. To overcome this problem preparations were first stained with Giemsa and the cells of interest precisely located with the aid of an England finder. The same preparations were then hydrolysed and stained with Feulgen—pararosaniline(SO2), after which the previously identified cells were investigated. The DNA distribution after Feulgen staining corresponded with the shape of nuclei after Giemsa staining. DNA was present in all investigated stages of the four parasites, including macrogamonts of I. (T.) gondii and E. tenella and peripheral blood gamonts of P. berghei. Macrogamonts could be recognized, even at a stage at which they can hardly be differentiated from young schizonts in Giemsa-stained preparations, by their typical distribution pattern of Feulgen fluorescence. Feulgen fluorescence was more granular and confined to the peripheral region of the nucleus, leaving a distinct nucleolus unstained. The horseshoe-shaped nuclei typical of macrogamonts could also be observed in some second generation merozoites of E. tenella, indicating that these merozoites are already sexually differentiated. The relationship between the present cytochemical observations and the ultrastructure of the four investigated parasites is discussed.


2002 ◽  
Vol 06 (08) ◽  
pp. 514-526 ◽  
Author(s):  
Jiří Mosinger ◽  
Viktor Kliment ◽  
Jan Sejbal ◽  
Pavel Kubát ◽  
Kamil Lang

The photodynamic sensitizers zinc(II)- and palladium(II)-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrins and 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin form 1:1 and/or 1:2 supramolecular complexes with native cyclodextrins (CD) and 2-hydroxypropyl cyclodextrins (hpCD) in aqueous neutral solutions. The formation of these assemblies causes a bathochromic shift of the porphyrin Soret band in the UV-vis spectra and a red shift of the fluorescence emission bands. The binding constants span over three orders of magnitude, from 8.1 × 102 M −1 to 5.4 × 105 M −1 (or 1.1 × 106 M −2) depending on the size of the CD cavity and on the functionalization by adding 2-hydroxypropyl groups. The highest binding constants were obtained for hpβCD and hpγCD. The Nuclear Overhauser spectroscopy signals (ROESY) revealed three binding modes: i) inclusion of the porphyrin 4-sulfonatophenyl or 4-carboxyphenyl groups via the secondary face of βCD and hpβCD with sulfonic or carboxylic groups oriented towards the primary hydroxyl groups. ii) inclusion of the porphyrin groups via the primary face of γCD and hpγCD. iii) non-specific binding of the porphyrin monomers or aggregates on the cyclodextrin exterior. The inclusion host-guest complexation via i) or ii) does not influence the inherent photophysical properties of the monomeric porphyrins such as the quantum yields of fluorescence, the triplet states, and the singlet oxygen formation. Due to the deaggregation effect of cyclodextrins, the inclusion complexes remain efficient supramolecular sensitizers of singlet oxygen even under conditions of extensive aggregation in aqueous solutions.


Chemosensors ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Wei Wei ◽  
Juan Huang ◽  
Wenli Gao ◽  
Xiangyang Lu ◽  
Xingbo Shi

In this work, blue emission carbon dots (CDs) are synthesized in the one-pot solvothermal method using naringin as precursor. The CDs are used to develop a ratiometric fluorescence sensor for the sensitive analysis of Al3+ with a detection limit of 113.8 nM. A fluorescence emission peak at 500 nm gradually appears, whereas the original fluorescence peak at 420 nm gradually decreases upon the increase in the Al3+ concentration. More importantly, the obvious color change of the CDs probe from blue to green under a 360 nm UV lamp can be identified by a smartphone and combined with the RGB (red/green/blue) analysis. This results in a visual and sensitive analysis of Al3+ with a detection limit of 5.55 μM. Moreover, the high recovery is in the 92.46–104.10% range, which demonstrates the high accuracy of this method for actual samples’ analysis. The use of a smartphone and the RGB analysis greatly simplifies the operation process, saves equipment cost, shortens the detection time, and provides a novel method for the instant, on-site, visual detection of Al3+ in actual samples.


Sign in / Sign up

Export Citation Format

Share Document