scholarly journals Carbon Dots Fluorescence-Based Colorimetric Sensor for Sensitive Detection of Aluminum Ions with a Smartphone

Chemosensors ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Wei Wei ◽  
Juan Huang ◽  
Wenli Gao ◽  
Xiangyang Lu ◽  
Xingbo Shi

In this work, blue emission carbon dots (CDs) are synthesized in the one-pot solvothermal method using naringin as precursor. The CDs are used to develop a ratiometric fluorescence sensor for the sensitive analysis of Al3+ with a detection limit of 113.8 nM. A fluorescence emission peak at 500 nm gradually appears, whereas the original fluorescence peak at 420 nm gradually decreases upon the increase in the Al3+ concentration. More importantly, the obvious color change of the CDs probe from blue to green under a 360 nm UV lamp can be identified by a smartphone and combined with the RGB (red/green/blue) analysis. This results in a visual and sensitive analysis of Al3+ with a detection limit of 5.55 μM. Moreover, the high recovery is in the 92.46–104.10% range, which demonstrates the high accuracy of this method for actual samples’ analysis. The use of a smartphone and the RGB analysis greatly simplifies the operation process, saves equipment cost, shortens the detection time, and provides a novel method for the instant, on-site, visual detection of Al3+ in actual samples.

RSC Advances ◽  
2015 ◽  
Vol 5 (15) ◽  
pp. 11667-11675 ◽  
Author(s):  
Baozhan Zheng ◽  
Tao Liu ◽  
Man Chin Paau ◽  
Meina Wang ◽  
Yang Liu ◽  
...  

This work reports a simple and energy-saving strategy for selective synthesis of water-soluble and organic-soluble carbon dots at room temperature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1831
Author(s):  
Hsin Lee ◽  
Yen-Chang Su ◽  
Hsiang-Hao Tang ◽  
Yu-Sheng Lee ◽  
Jan-Yee Lee ◽  
...  

Nitrogen and sulfur codoped carbon dots (NSCDs) were synthesized via a one-pot hydrothermal method, and citric acid, ethylenediamine, and methyl blue were used as precursors. The obtained NSCDs were spherical with an average size of 1.86 nm. The fluorescence emission spectra of the NSCDs were excitation independent and emitted blue fluorescence at 440 nm with an excitation wavelength at 350 nm. The quantum yield of the NSCDs was calculated to be 68.0%. The NSCDs could be constructed as fluorescent probes for highly selective and sensitive sensing mercuric (Hg2+) and hypochlorite (ClO−) ions. As the addition of Hg2+ or ClO− ions to the NSCDs, the fluorescence intensity was effectively quenched due to dynamic quenching. Under the optimal conditions, the linear response of the fluorescence intensity ranged from 0.7 μM to 15 μM with a detection limit of 0.54 μM and from 0.3 μM to 5.0 μM with a limit of detection of 0.29 μM for Hg2+ and ClO− ions, respectively. Finally, the proposed method was successfully used for quantifying Hg2+ and ClO− ions in spiked tap water samples.


Nanoscale ◽  
2015 ◽  
Vol 7 (41) ◽  
pp. 17278-17282 ◽  
Author(s):  
Xiangcheng Sun ◽  
Christian Brückner ◽  
Yu Lei

Microwave-assisted synthesis of nitrogen and phosphorus co-doped carbon dots with high quantum yield and dual (blue and green) fluorescence emission.


NANO ◽  
2021 ◽  
pp. 2150103
Author(s):  
Yudong Zhang ◽  
Yan Dong ◽  
Haifu Zheng ◽  
Xueyun Yang ◽  
Cheng Yao

One-pot hydrothermal carbonization approach was employed to synthesize the blue-emission carbon dots derived from chitosan (Cs) and o-phenylenediamine (OPD). The Cs-based carbon dots (Cs–CDs) possessed a certain high quantum yield of 58% and exhibited excellent solubility, stability and fluorescence response in aqueous solutions. The Cs–CDs were designed as a sensor for Cr(VI) and H2O2 determination. The sensing strategy of Cr(VI) was based on the inner filter effect (IFE) and static quenching effect (SQE), showing a good linear correlation ranging from 1 to 130[Formula: see text][Formula: see text]M with a detection limit (LOD) of 0.91[Formula: see text][Formula: see text]M. In addition, the determination for H2O2 was attributed to the elimination of IFE (EIFE) due to the reduction reaction and the detection for H2O2 was in the linear range from 1.0 to 200.0[Formula: see text][Formula: see text]M with LOD of 0.51[Formula: see text][Formula: see text]M. Finally, the proposed designed sensor could be simply applied for detection of Cr(VI) and H2O2 in real samples.


2021 ◽  
Author(s):  
Huizhen Wang ◽  
Yang Liu ◽  
Xiaoxia Sun ◽  
Yu Hu

Abstract A novel sensitive chiral fluorescent “turn-off” sensor based on 3,3′-positions modified triazole-linked BINOL-Glucose derivative has been synthesized via “click” reaction. The fluorescence emission intensity of (S, β-D)-1 was almost completely quenched along with obvious color change from yellow to green upon the coordination with a Cu(II) ion while other metal ions had no obvious change. The detection limit of the sensor (S, β-D)-1 toward copper ion was calculated to be 0.31 μmol L-1. The stoichiometry ratio of (S, β-D)-1-Cu2+ complex was proved to be 1:1 by the analysis of NMR spectroscopic, ESI-MS data and the job’s plot. HNMR spectroscopic and IR were also used to study the mechanism, demonstrated copper ion was coordinated with (S, β-D)-1 by 1+1complex formation.


2019 ◽  
Vol 5 (4) ◽  
pp. 70 ◽  
Author(s):  
Liang ◽  
Ge ◽  
Hou ◽  
Ren ◽  
Yang ◽  
...  

The commercially acquired aqueous solution of “carbon quantum dots” sample was evaluated by optical absorption and fluorescence emission methods; in reference to aqueous dispersed small carbon nanoparticles and representative carbon dots prepared from chemical functionalization of the carbon nanoparticles. The results suggest a very low content of carbon that is associated with nanoscale carbon particles/domains in the as-supplied sample; and likely significant contamination by dye-like species/mixtures. In the absence of any information on the synthesis and history of the commercial sample, the possible cause of the contamination was illustrated by an example on similar dye formation in the one-pot carbonization synthesis of “red carbon dots” from citric acid–formamide precursor mixtures under too mild processing conditions that were insufficient for the intended carbonization. The negative impacts to the carbon dots research field by the apparent proliferation and now commercial availability of carbon-deficient or even largely carbon-less “carbon quantum dots”, which are more susceptible to dye contamination or dominance, are discussed.


Author(s):  
Ying Liu ◽  
Jianghong Yan ◽  
Yu Huang ◽  
Zhiheng Sun ◽  
Huijing Zhang ◽  
...  

Glutathione (GSH) is an important antioxidant and free radical scavenger that converts harmful toxins into harmless substances and excretes them out of the body. In the present study, we successfully prepared single-atom iron oxide-nanoparticle (Fe-NP)-modified nanodiamonds (NDs) named Fe-NDs via a one-pot in situ reduction method. This nanozyme functionally mimics two major enzymes, namely, peroxidase and oxidase. Accordingly, a colorimetric sensing platform was designed to detect hydrogen peroxide (H2O2) and GSH. Owing to their peroxidase-like activity, Fe-NDs can oxidize colorless 3,3′,5,5′-tetramethylbenzidine (TMB) into blue with sufficient linearity at H2O2 concentrations of 1–60 μM and with a detection limit of 0.3 μM. Furthermore, using different concentrations of GSH, oxidized TMB can be reduced to TMB, and the color change from blue to nearly colorless can be observed by the naked eye (linear range, 1–25 μM; detection limit, 0.072 μM). The established colorimetric method based on oxidase-like activity can be successfully used to detect reduced GSH in tablets and injections with good selectivity and high sensitivity. The results of this study exhibited reliable consistency with the detection results obtained using high-performance liquid chromatography (HPLC). Therefore, the Fe-NDs colorimetric sensor designed in this study offers adequate accuracy and sensitivity.


2021 ◽  
Vol 11 (4) ◽  
pp. 1630
Author(s):  
Yakubu Newman Monday ◽  
Jaafar Abdullah ◽  
Nor Azah Yusof ◽  
Suraya Abdul Rashid ◽  
Rafidah Hanim Shueb

Carbon dots (CDs), a nanomaterial synthesized from organic precursors rich in carbon content with excellent fluorescent property, are in high demand for many purposes, including sensing and biosensing applications. This research focused on preparing CDs from natural and abundant waste, palm kernel shells (PKS) obtained from palm oil biomass, aiming for sensing and biosensing applications. Ethylenediamine and L-phenylalanine doped CDs were produced via the hydrothermal and solvothermal methods using one-pot synthesis techniques in an autoclave batch reactor. The as-prepared N-CDs shows excellent photoluminescence (PL) property and a quantum yield (QY) of 13.7% for ethylenediamine (EDA) doped N-CDs (CDs-EDA) and 8.6% for L-phenylalanine (L-Ph) doped N-CDs (CDs-LPh) with an excitation/emission wavelength of 360 nm/450 nm. The transmission electron microscopy (TEM) images show the N-CDs have an average particle size of 2 nm for both CDs. UV-Visible spectrophotometric results showed C=C and C=O transition. FTIR results show and confirm the presence of functional groups, such as -OH, -C=O, -NH2 on the N-CDs, and the X-ray diffraction pattern showed that the N-CDs were crystalline, depicted with sharp peaks. This research work demonstrated that palm kernel shell biomass often thrown away as waste can produce CDs with excellent physicochemical properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aadil Ahmad Bhat ◽  
Shakeel Ahmad Khandy ◽  
Ishtihadah Islam ◽  
Radha Tomar

AbstractThe present manuscript aims at the synthesis of cesium based halide perovskite nanostructures and the effect of cobalt doping on the structural, optical, lumnisent, charge storage and photocatalytic properties. In a very first attempt, we report the solvothermal synthesis of Co doped CsPbCl3 nanostructures under subcritical conditions. The structural features were demonstrated by X-ray diffraction (XRD) Surface morphology determined cubic shape of the synthesized particles. Doping is an excellent way to modify the properties of host material in particular to the electronic structure or optical properties. Incorporation of Co2+ ions in the perovskite structure tunes the optical properties of the nanostructures making this perovskite a visible light active material (Eg = 1.6 eV). This modification in the optical behaviour is the result of size effect, the crystallite size of the doped nanostructures increases with cobalt doping concentration. Photolumniscance (PL) study indicated that CsPbCl3 exhibited Blue emission. Thermogravametric analysis (TGA) revealed that the nanostructures are quite stable at elavated temperatures. The electrochemical performance depicts the pseudocapacative nature of the synthesized nanostructures and can used for charge storage devices. The charge storage capability showed direct proportionality with cobalt ion concentration. And Finally the photocatalytic performance of synthesized material shows superior catalytic ability degrading 90% of methylene blue (MB) dye in 180 min under visible light conditions.


Sign in / Sign up

Export Citation Format

Share Document