Bending, curling, and twisting in polymeric bilayers

Soft Matter ◽  
2019 ◽  
Vol 15 (22) ◽  
pp. 4541-4547 ◽  
Author(s):  
Catherine E. Wisinger ◽  
Leslie A. Maynard ◽  
Justin R. Barone

Polyolefin thermoplastic elastomer (POE) bilayers can be pulled and released to form helices without the use of directional anisotropy in the layers.

1989 ◽  
Author(s):  
R. W. Fletcher ◽  
H. W. Cheung

2017 ◽  
Vol 90 (3) ◽  
pp. 550-561 ◽  
Author(s):  
Prithwiraj Mandal ◽  
Siva Ponnupandian ◽  
Soumyadip Choudhury ◽  
Nikhil K. Singha

ABSTRACT Thiol-ene modification of high vinyl content thermoplastic elastomeric styrene butadiene styrene (SBS) block copolymer (BCP) was carried out using different thiolating agents in toluene at 70 °C. 1H NMR analysis confirmed the participation of vinyl double bond in the thiol-ene modification reaction of SBS. Surface morphology of the block copolymers evaluated by atomic force microscopy analysis showed higher roughness after the thiol-ene reaction. The thiol-modified SBS block copolymer showed better adhesion strength and oil resistance properties than the pristine SBS.


Author(s):  
A Hamdi ◽  
A Boulenouar ◽  
N Benseddiq

No unified stress-based criterion exists, in the literature, for predicting the rupture of hyperelastic materials subjected to mutiaxial loading paths. This paper aims to establish a generalized rupture criterion under plane stress loading for elastomers. First, the experimental set up, at breaking, including various loading modes, is briefly described and commented. It consists of uniaxial tests, biaxial tests and pure shear tests, performed on different rubbers. The used vulcanizate and thermoplastic rubber materials are a Natural Rubber (NR), a Styrene Butadiene Rubber (SBR), a Polyurethane (PU) and a Thermoplastic elastomer (TPE). Then, we have investigated a new theoretical approach, based upon the principal stresses, to establish a failure criterion under quasi-static loadings. Thus, we have proposed a new analytical model expressed as a function of octahedral stresses. Quite good agreement is highlighted when comparing the ultimate stresses, at break, between the experimental data and the prediction of the proposed criteria using our rubber-like materials.


2021 ◽  
Vol 26 ◽  
pp. 102027
Author(s):  
Elnaz Esmizadeh ◽  
Ali Vahidifar ◽  
Sahar Shojaie ◽  
Ghasem Naderi ◽  
Mohammad Reza Kalaei ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (51) ◽  
pp. 29765-29771 ◽  
Author(s):  
Minghui Xu ◽  
Xianming Lu ◽  
Hongchang Mo ◽  
Ning Liu ◽  
Qian Zhang ◽  
...  

A novel energetic polymeric binder PBFMO-b-PNMMO alternative block thermoplastic elastomer was developed for metal-rich solid propellants.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 872
Author(s):  
Malgorzata Ulewicz ◽  
Alina Pietrzak

This article presents physical and mechanical properties of concrete composites that include waste thermoplastic elastomer (TPE) from the production process of car floor mats. Waste elastomer (2–8 mm fraction) was used as a substitute for fine aggregate in quantities of 2.5, 5.0, 7.5, and 10% of the cement weight. For all series of concrete, the following tests were carried out: compression strength, bending tensile strength, splitting tensile strength, absorbability, density, resistance to water penetration under pressure, frost resistance, and abrasion resistance, according to applicable standards. Moreover, SEM/EDS analysis was carried out on the surface microstructure of synthesized concrete composites. It was proven that the use of production waste from the production process of car floor mats in the quantity of 2.5% does not influence the change of the concrete microstructure and it does not result in the decrease of the mechanical parameters of concrete modified with waste. All concrete modified with the addition of waste meet standards requirements after carrying out 15 cycles of freezing and thawing, and the average decrease in compression strength did not exceed 20%. Adding waste in the quantity of 2.5% allows for limiting the use of aggregate by about 5%, which is beneficial for the natural environment.


Biosensors ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 162
Author(s):  
Mathias Busek ◽  
Steffen Nøvik ◽  
Aleksandra Aizenshtadt ◽  
Mikel Amirola-Martinez ◽  
Thomas Combriat ◽  
...  

Polydimethylsiloxane (PDMS) has been used in microfluidic systems for years, as it can be easily structured and its flexibility makes it easy to integrate actuators including pneumatic pumps. In addition, the good optical properties of the material are well suited for analytical systems. In addition to its positive aspects, PDMS is well known to adsorb small molecules, which limits its usability when it comes to drug testing, e.g., in organ-on-a-chip (OoC) systems. Therefore, alternatives to PDMS are in high demand. In this study, we use thermoplastic elastomer (TPE) films thermally bonded to laser-cut poly(methyl methacrylate) (PMMA) sheets to build up multilayered microfluidic devices with integrated pneumatic micro-pumps. We present a low-cost manufacturing technology based on a conventional CO2 laser cutter for structuring, a spin-coating process for TPE film fabrication, and a thermal bonding process using a pneumatic hot-press. UV treatment with an Excimer lamp prior to bonding drastically improves the bonding process. Optimized bonding parameters were characterized by measuring the burst load upon applying pressure and via profilometer-based measurement of channel deformation. Next, flow and long-term stability of the chip layout were measured using microparticle Image Velocimetry (uPIV). Finally, human endothelial cells were seeded in the microchannels to check biocompatibility and flow-directed cell alignment. The presented device is compatible with a real-time live-cell analysis system.


Sign in / Sign up

Export Citation Format

Share Document