High-transmittance and focal controllable plano-convex lenses with embedded nanolens bottoms formed by electrowetting on a colloidal monolayer

2020 ◽  
Vol 8 (8) ◽  
pp. 2659-2663
Author(s):  
Xiangmeng Li ◽  
Jinyou Shao ◽  
Hongmiao Tian ◽  
Xiangming Li ◽  
Xiaoliang Chen ◽  
...  

UV-curable polymer lenses with a nanolens array decorated on the bottom surface via irreversible electrowetting on a hydrophobic colloidal monolayer.

The intensification of the work of open gutter by applying textured shells to their bottom surface, forming an artificial roughness, is considered. It is shown that the presence of corrugated surfaces contributes to vortex formation during water flow and improves the separation and transportation of mineral impurities previously dropped into the bottom of the gutters. The implementation of operations to improve the structure of the gutters is possible during the repair and restoration works with the use of modern polymer materials. The design of a small-sized hydraulic stand, which makes it possible to study the transport capacity of flows containing solid inclusions, is presented. The method of research is hydraulic testing, accompanied by the use of chiaroscuro effect, as well as photo and film equipment. The optimal structure of the inner surface of the gutters and pipes providing vortex formation, which will improve the ability of the flow to carry out and transport foreign dispersed inclusions (sand) of different granulometric compositions, is determined.


2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


2003 ◽  
Vol 766 ◽  
Author(s):  
Kosuke Takenaka ◽  
Masao Onishi ◽  
Manabu Takenshita ◽  
Toshio Kinoshita ◽  
Kazunori Koga ◽  
...  

AbstractAn ion-assisted chemical vapor deposition method by which Cu is deposited preferentially from the bottom of trenches (anisotropic CVD) has been proposed in order to fill small via holes and trenches. By using Ar + H2 + C2H5OH[Cu(hfac)2] discharges with a ratio H2 / (H2 + Ar) = 83%, Cu is filled preferentially from the bottom of trenches without deposition on the sidewall and top surfaces. The deposition rate on the bottom surface of trenches is experimentally found to increase with decreasing its width.


2005 ◽  
Vol 59 (7) ◽  
pp. 1006-1013 ◽  
Author(s):  
Makoto Wakatsuki
Keyword(s):  

2012 ◽  
Author(s):  
John Jusko ◽  
Glen Baker ◽  
Cody Hone ◽  
Thomas Naguy ◽  
Al Baum ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2239
Author(s):  
Nicholas Rodriguez ◽  
Samantha Ruelas ◽  
Jean-Baptiste Forien ◽  
Nikola Dudukovic ◽  
Josh DeOtte ◽  
...  

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100–350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.


Sign in / Sign up

Export Citation Format

Share Document