Cyclic hexapeptoids with N-alkyl side chains: solid-state assembly and thermal behaviour

CrystEngComm ◽  
2020 ◽  
Vol 22 (38) ◽  
pp. 6371-6384 ◽  
Author(s):  
Giovanni Pierri ◽  
Rosaria Schettini ◽  
Jürgen Nuss ◽  
Robert E. Dinnebier ◽  
Francesco De Riccardis ◽  
...  

The solid state assembly of two cyclic hexapeptoids decorated respectively with five and six carbon N-alkyl side chains is analyzed by X-ray diffraction, intermolecular energies and lattice energy calculations.

2017 ◽  
Vol 13 ◽  
pp. 1-9 ◽  
Author(s):  
Andreas Kraft ◽  
Johannes Stangl ◽  
Ana-Maria Krause ◽  
Klaus Müller-Buschbaum ◽  
Florian Beuerle

[60]Fullerene hexakisadducts possessing 12 carboxylic acid side chains form crystalline hydrogen-bonding frameworks in the solid state. Depending on the length of the linker between the reactive sites and the malonate units, the distance of the [60]fullerene nodes and thereby the spacing of the frameworks can be controlled and for the most elongated derivative, continuous channels are obtained within the structure. Stability, structural integrity and porosity of the material were investigated by powder X-ray diffraction, thermogravimetry and sorption measurements.


2014 ◽  
Vol 70 (a1) ◽  
pp. C913-C913
Author(s):  
Sanaz Khorasani ◽  
Manuel Fernandes

Solid-state chemistry involves the manipulation of molecules and materials through photochemical, thermal, or mechanical reaction methods. Single-crystal-to-single-crystal (SCSC) reactions are rare, but offer the opportunity to study reaction mechanisms and molecular motions in the solid state at the atomic level using single crystal X-ray diffraction. This allows the effect of the surrounding molecules, and hence the reaction cavity, on the reacting molecules to be examined which may ultimately lead to postcrystallization methods for creating new materials or reaction products that cannot easily be obtained via solution. SCSC reactions involving two different molecules are relatively uncommon. A convenient system that allows the study of such reactions is the [4+2] Diels-Alder reaction of 1,4-dithiintetracarboxylic type compounds with anthracene derivatives. In the work reported here, electron donor to acceptor interactions between 9-Methylanthracene and bis(N-cyclobutylimino)-1,4-dithiin lead to the formation of chiral charge transfer (CT) crystals [1]. These undergo a topochemical thermal SCSC [4 + 2] Diels-Alder reaction in the solid state. CT crystals were reacted at 400C, their structures determined by X-ray diffraction at various degrees of conversion, and examined using Hirshfeld surfaces and lattice energy calculations to find evidence of reaction cooperativity and feedback mechanisms. In this case, a maximum reaction conversion of around 96% was obtained indicating that the reaction is non-random within the charge transfer stacks, with close contacts between product molecules in the reacted crystal also providing some evidence for reaction cooperativity along the b axis perpendicular to the CT stacking axis.


Author(s):  
Kenneth M. Richter ◽  
John A. Schilling

The structural unit of solid state collagen complexes has been reported by Porter and Vanamee via EM and by Cowan, North and Randall via x-ray diffraction to be an ellipsoidal unit of 210-270 A. length by 50-100 A. diameter. It subsequently was independently demonstrated by us in dog tendon, dermis, and induced complexes. Its detailed morphologic, dimensional and molecular weight (MW) aspects have now been determined. It is pear-shaped in long profile with m diameters of 57 and 108 A. and m length of 263 A. (Fig. 1, tendon, KMnO4 fixation, Na-tungstate; Fig. 2a, schematic of unit in long, C, and x-sectional profiles of its thin, xB, and bulbous, xA portions; Fig. 2b, tendon essentially unmodified by ether and 0.4 N NaOH treatment, Na-tungstate). The unit consists of a uniquely coild cable, c, of ṁ 22.9 A. diameter and length of 2580-3316 A. The cable consists of three 2nd-strands, s, each of m 10.6 A.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


Author(s):  
A. Kareem Dahash Ali ◽  
Nihad Ali Shafeek

This study included the fabrication of    compound (Tl2-xHgxBa2-ySryCa2Cu3O10+δ) in a manner solid state and under hydrostatic pressure ( 8 ton/cm2) and temperature annealing(850°C), and determine the effect of the laser on the structural and electrical properties elements in the compound, and various concentrations of x where (x= 0.1,0.2,0.3 ). Observed by testing the XRD The best ratio of compensation for x is 0.2 as the value of a = b = 5.3899 (A °), c = 36.21 (A °) show that the installation of four-wheel-based type and that the best temperature shift is TC= 142 K  .When you shine a CO2 laser on the models in order to recognize the effect of the laser on these models showed the study of X-ray diffraction of these samples when preparing models with different concentrations of the values ​​of x, the best ratio of compensation is 0.2 which showed an increase in the values ​​of the dimensions of the unit cell a=b = 5.3929 (A °), c = 36.238 (A°). And the best transition temperature after shedding laser is TC=144 K. 


2019 ◽  
Vol 15 (8) ◽  
pp. 850-862
Author(s):  
Mirthala Flores-García ◽  
Juan Manuel Fernández-G. ◽  
Cristina Busqueta-Griera ◽  
Elizabeth Gómez ◽  
Simón Hernández-Ortega ◽  
...  

Background: Ischemic heart disease, cerebrovascular accident, and venous thromboembolism have the presence of a thrombotic event in common and represent the most common causes of death within the population. Objective: Since Schiff base copper(II) complexes are able to interact with polyphosphates (PolyP), a procoagulant and potentially prothrombotic platelet agent, we investigated the antiplatelet aggregating properties of two novel tridentate Schiff base ligands and their corresponding copper( II) complexes. Methods: The Schiff base ligands (L1) and (L2), as well as their corresponding copper(II) complexes (C1) and (C2), were synthesized and characterized by chemical analysis, X-ray diffraction, mass spectrometry, and UV-Visible, IR and far IR spectroscopy. In addition, EPR studies were carried out for (C1) and (C2), while (L1) and (L2) were further analyzed by 1H and 13C NMR. Tests for antiplatelet aggregation activities of all of the four compounds were conducted. Results: X-ray diffraction studies show that (L1) and (L2) exist in the enol-imine tautomeric form with a strong intramolecular hydrogen bond. NMR studies show that both ligands are found as enol-imine tautomers in CDCl3 solution. In the solid state, the geometry around the copper(II) ion in both (C1) and (C2) is square planar. EPR spectra suggest that the geometry of the complexes is similar to that observed in the solid state by X-ray crystallography. Compound (C2) exhibited the strongest antiplatelet aggregation activity. Conclusion: Schiff base copper(II) complexes, which are attracting increasing interest, could represent a new approach to treat thrombosis by blocking the activity of PolyP with a potential anticoagulant activity and, most importantly, demonstrating no adverse bleeding events.


Sign in / Sign up

Export Citation Format

Share Document