Stark and Zeeman effects on the topological phase and transport properties of topological crystalline insulator thin films

2020 ◽  
Vol 22 (21) ◽  
pp. 12129-12139
Author(s):  
Pham Thi Huong ◽  
Chuong V. Nguyen ◽  
Huynh V. Phuc ◽  
Nguyen N. Hieu ◽  
Bui D. Hoi ◽  
...  

We applied a perpendicular electric field and an in-plane magnetic field to not only tune the Dirac gap of a SnTe(001) thin film and find the phase transition but also to investigate their effects on the group velocity of both massless and massive surface Dirac fermions.

SPIN ◽  
2016 ◽  
Vol 06 (02) ◽  
pp. 1640005 ◽  
Author(s):  
Anirudha Menon ◽  
Debashree Chowdhury ◽  
Banasri Basu

In this paper, we discuss the role of material parameters and external field effects on a thin film topological insulator(TI) in the context of quantum phase transition (QPT). First, we consider an in-plane tilted magnetic field and determine the band structure of the surface states as a function of the tilt angle. We show that the presence of either a hybridization term or hexagonal warping or a combination of both leads to a semi-metal to insulator phase transition which is facilitated by their [Formula: see text] symmetry breaking character. We then note that while the introduction of an electric field does not allow for this QPT since it does not break [Formula: see text] symmetry, it can be used in conjunction with a tunneling element to reach a phase transition efficiently. The corresponding critical point is then nontrivially dependent on the electric field, which is pointed out here. Then, we demonstrate that including a hexagonal warping term leads to an immediate [Formula: see text] symmetry violating QPT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aziz Ahmed ◽  
Seungwoo Han

AbstractN-type bismuth telluride (Bi2Te3) thin films were prepared on an aluminum nitride (AlN)-coated stainless steel foil substrate to obtain optimal thermoelectric performance. The thermal co-evaporation method was adopted so that we could vary the thin film composition, enabling us to investigate the relationship between the film composition, microstructure, crystal preferred orientation and thermoelectric properties. The influence of the substrate temperature was also investigated by synthesizing two sets of thin film samples; in one set the substrate was kept at room temperature (RT) while in the other set the substrate was maintained at a high temperature, of 300 °C, during deposition. The samples deposited at RT were amorphous in the as-deposited state and therefore were annealed at 280 °C to promote crystallization and phase development. The electrical resistivity and Seebeck coefficient were measured and the results were interpreted. Both the transport properties and crystal structure were observed to be strongly affected by non-stoichiometry and the choice of substrate temperature. We observed columnar microstructures with hexagonal grains and a multi-oriented crystal structure for the thin films deposited at high substrate temperatures, whereas highly (00 l) textured thin films with columns consisting of in-plane layers were fabricated from the stoichiometric annealed thin film samples originally synthesized at RT. Special emphasis was placed on examining the nature of tellurium (Te) atom based structural defects and their influence on thin film properties. We report maximum power factor (PF) of 1.35 mW/m K2 for near-stoichiometric film deposited at high substrate temperature, which was the highest among all studied cases.


2006 ◽  
Vol 20 (14) ◽  
pp. 821-833 ◽  
Author(s):  
ARIF NESRULLAJEV ◽  
ŞENER OKTIK

In this work, the effect of thin films on the thermotropic and thermo-optical properties and peculiarities of the phase transitions between the smectic A and isotropic liquid have been investigated. Peculiarities of the heterophase regions of the straight smectic A-isotropic liquid and reverse isotropic liquid-smectic A phase transitions have been studied. Change of morphologic properties of the heterophase regions, shift of the phase transition temperatures and the change of temperature widths of these heterophase regions under thin film influence have been observed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Jantayod ◽  
D. Doonyapisut ◽  
T. Eknapakul ◽  
M. F. Smith ◽  
W. Meevasana

Abstract The electrical transport properties of a thin film of the diamondoid adamantane, deposited on an Au/W substrate, were investigated experimentally. The current I, in applied potential V, from the admantane-thiol/metal heterstructure to a wire lead on its surface exhibited non-symmetric (diode-like) characteristics and a signature of resistive switching (RS), an effect that is valuable to non-volatile memory applications. I(V) follows a hysteresis curve that passes twice through $$I(0)=0$$ I ( 0 ) = 0 linearly, indicating RS between two states with significantly different conductances, possibly due to an exotic mechanism.


Author(s):  
Maksim Zholudev ◽  
Aleksandr Kadykov ◽  
Mikhail Fadeev ◽  
Michal Marcinkiewicz ◽  
Sandra Ruffenach ◽  
...  

We report on comparison between temperature-dependent magneto¬absorption and magnetotransport spectroscopy of HgTe/CdHgTe quantum wells in terms of detection of phase transition between topological insulator and band insulator states. Our results demonstrate that temperature-dependent magnetospectroscopy is a powerful tool to discriminate trivial and topological insulator phases, yet magnetotransport method is shown to have advantages for clear manifestation of the phase transition with accurate quantitative values of transition parameter (i.e. critical magnetic field Bc).


Nature ◽  
2018 ◽  
Vol 564 (7736) ◽  
pp. 390-394 ◽  
Author(s):  
James L. Collins ◽  
Anton Tadich ◽  
Weikang Wu ◽  
Lidia C. Gomes ◽  
Joao N. B. Rodrigues ◽  
...  

2012 ◽  
Vol 1434 ◽  
Author(s):  
Kohei Higashikawa ◽  
Kei Shiohara ◽  
Masayoshi Inoue ◽  
Takanobu Kiss ◽  
Masateru Yoshizumi ◽  
...  

ABSTRACTTo enhance a global critical current in a superconductor, it is indispensable to understand current limiting factors and their influence on such a critical current. From this point of view, we have investigated in-plane distribution of local critical current density and its electric field criterion in a thin-film superconductor by using scanning-Hall probe microscopy. In a remanent state, after the application of sufficiently high magnetic field to a sample, current flows at critical current density according to the critical state model. Such distribution of current density was estimated from that of measured magnetic field using the Biot-Savart law. Furthermore, the corresponding electric field criterion was evaluated from the relaxation of such remanent magnetic field by considering Faraday’s law. This means that we could estimate in-plane distribution of local critical current density as a function of electric field criterion in a nondestructive manner. This characterization method would be very helpful for finding current limiting factors in a thin-film superconductor and their influence on its global current density versus electric field properties which would usually be obtained by four-probe method.


Sign in / Sign up

Export Citation Format

Share Document