Polarization consistent basis sets using the projector augmented wave method: a renovation brought by PAW into Gaussian basis sets

2020 ◽  
Vol 22 (46) ◽  
pp. 27037-27052
Author(s):  
Quan Manh Phung ◽  
Masaya Hagai ◽  
Xiao-Gen Xiong ◽  
Takeshi Yanai

A new family of polarization consistent basis set, combined with the projector augmented wave method, was introduced. The basis sets are compact and have good performance as compared to conventional all-electron basis sets in DFT calculations.

1992 ◽  
Vol 70 (6) ◽  
pp. 1822-1826 ◽  
Author(s):  
G. L. Malli ◽  
A. B. F. Da Silva ◽  
Yasuyuki Ishikawa

Matrix Dirac–Fock–Coulomb and Dirac–Fock–Breit self-consistent field calculations are performed for a number of neutral atoms. He (Z = 2) through Xe (Z = 54), using the universal Gaussian basis set (18s, 12p, 11d) reported recently by Da Silva etal. The total Dirac–Fock–Coulomb, the Dirac–Fock–Breit, and the Breit interaction energies calculated with this universal Gaussian basis set are in good agreement with the corresponding values obtained by using an extensive well-tempered Gaussian basis set for the He through Ca (Z = 20) atoms. Although this universal Gaussian basis set is inadequate for the calculation of total Dirac–Fock–Coulomb and Dirac–Fock–Breit energies for the Kr, Sr, and Xe atoms, the Breit interaction energies calculated with this basis for these three atoms are in very good agreement with the corresponding Breit interaction energies obtained by using the extensive well-tempered Gaussian basis sets. Work is in progress to generate a more extensive and energetically better universal Gaussian basis set for He through Xe for its use in non-relativistic Hartree–Fock as well as Dirac–Fock self-consistent field calculations on polyatomics involving heavy atoms.


1992 ◽  
Vol 70 (2) ◽  
pp. 513-519 ◽  
Author(s):  
Roberto Moccia ◽  
Pietro Spizzo

By using the K-matrix technique for the continuum states that was previously employed with particularly diffuse L2 basis sets, it is shown that GTO bases are also capable of yielding accurate values for the properties belonging to the electronic continuum. The method has been tested for helium and proved of satisfactory accuracy also for the analysis of the autoionizing states. The results include the phase shifts of the continuum states of the 1Seand 1P° manifolds, the properties of the lowest resonances of these symmetries, the ground state photoionization cross section, and the S contribution to the 1s2p1P° photoionization cross section. The results obtained suggest that the proposed technique should be useful for computing molecular differential photoionization cross sections by exploiting the widely used codes that employ GTO bases. Keywords: photoionization, Gaussian basis sets, helium, autoionizing states.


1988 ◽  
Vol 53 (10) ◽  
pp. 2214-2229 ◽  
Author(s):  
Małgorzata M. Szczęśniak ◽  
Steve Scheiner

High-quality Gaussian basis sets of the well-tempered type, containing three sets of polarization functions on all atoms, are used to investigate the interaction of Li+ with HF, OH2, and NH3. These sets reproduce the SCF and MP2 energies of the various monomers very well and, moreover, accurately treat the multipole moments and polarizabilities of the monomers. When applied to the complexes, the sets are essentially free of primary and secondary basis set superposition error at the SCF level; MP2 extension effects are also completely negligible while basis set superposition effects are small but non-negligible. Analysis of the correlation corrections to the molecular properties, coupled with comparison of the interaction of the bases with a point charge, provides a straightforward explanation of correlation contributions to the interaction energy. Recommendations are provided to guide selection of basis sets for molecular interactions so as to avoid distortion of the various components.


2004 ◽  
Vol 59 (10) ◽  
pp. 1153-1176 ◽  
Author(s):  
Thomas Zuschneid ◽  
Holger Fischer ◽  
Thomas Handel ◽  
Klaus Albert ◽  
Günter Häfelinger

AbstractHigh-resolution gas phase measurements of 1H NMR spectra at 400 MHz and atmospheric pressure of seven small hydrocarbons are presented. The developed new method and the experimental set-up are described. Ab initio GIAO MO calculations of 1H and 13C NMR absolute shieldings on the HF, MP2 and B3LYP levels using 25 standard gaussian basis sets are reported for these hydrocarbons, based on experimental re distances. The measured gas phase 1H chemical shifts have been converted to an absolute σ0 shielding scale by use of the literature shielding of methane. These and gas phase 13C literature values have been transferred with literature ZPV data to estimated σeexp shieldings which are used to evaluate the basis set dependence of the calculated σe shieldings utilizing linear least squares regressions. Exponential extrapolations of Dunning basis set calculations allow the determination of basis set limits for 1H and 13C shieldings. 1H and 13C chemical shifts have been derived from the HF calculated shieldings with shieldings of TMS which has been geometry optimized and GIAO calculated in each basis. Standard deviations (esd) as low as 0.09 ppm for 1H and 0.76 ppm for 13C calculations have been obtained.The statistically best basis set for simultaneous calculation of 1H and 13C absolute shieldings or relative shifts is 6-311G* within the HF and B3LYP methods. Aiming for highest accuracy and precision, 1H and 13C have to be treated separately. In this case, best results are obtained using MP2/6-311G** or higher for 1H shieldings and MP2/cc-pVTZ for 13C shieldings.


2017 ◽  
Author(s):  
Saurav Dutta ◽  
Bhabani S. Mallik

<div> <table> <tr> <td> <p>Knowledge of the transition state is crucial in determining the mechanism in order to diversify the applicability of the reaction. The computational method is the most convenient way to locate the transition state in the absence any efficient experimental technique. We have applied the method of the transition state search on the Diels-Alder reaction computationally by means of combined linear synchronous transit and quadratic synchronous transit methods. Here we have shown that, of various methods adopted, BOP functional with numerical basis set provides a computationally economical alternative to the widely used B3LYP functional with higher Gaussian basis sets in the transition state search. It can reproduce the experimental parameters like activation energy of the Diels-Alder reaction, and the calculations are much faster than the corresponding other functional based calculations.</p> </td> </tr> </table> </div>


Sign in / Sign up

Export Citation Format

Share Document