Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions

2020 ◽  
Vol 10 (22) ◽  
pp. 7671-7680
Author(s):  
Li Yang ◽  
Jinzhu Ma ◽  
Xiaotong Li ◽  
Guangzhi He ◽  
Changbin Zhang ◽  
...  

Durable Pd-Ce-OMS-2 catalysts for ozone catalytic decomposition under harsh conditions were successfully prepared via a simple one-step hydrothermal process.

Author(s):  
Shan Wang ◽  
Hai Deng

Abstract The introduction of β-hydroxy-α-amino acids (βHAAs) into organic molecules has received considerable attention as these molecules have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of asymmetric synthesis of βHAAs, stereoselective synthesis to control the two chiral centres at Cα and Cβ positions is still challenging, with poor atomic economy and multi protection and deprotection steps. These syntheses are often operated under harsh conditions. Therefore, a biotransformation approach using biocatalysts is needed to selectively introduce these two chiral centres into structurally diverse molecules. Yet, there are few ways that enable one-step synthesis of βHAAs. One is to extend the substrate scope of the existing enzyme inventory. Threonine aldolases have been explored to produce βHAAs. However, the enzymes have poor controlled installation at Cβ position, often resulting in a mixture of diastereoisomers which are difficult to be separated. In this respect, l-threonine transaldolases (LTTAs) offer an excellent potential as the enzymes often provide controlled stereochemistry at Cα and Cβ positions. Another is to mine LTTA homologues and engineer the enzymes using directed evolution with the aim of finding engineered biocatalysts to accept broad substrates with enhanced conversion and stereoselectivity. Here, we review the development of LTTAs that incorporate various aldehyde acceptors to generate structurally diverse βHAAs and highlight areas for future developments. Key points • The general mechanism of the transaldolation reaction catalysed by LTTAs • Recent advances in LTTAs from different biosynthetic pathways • Applications of LTTAs as biocatalysts for production of βHAAs


2017 ◽  
Vol 5 (17) ◽  
pp. 8087-8094 ◽  
Author(s):  
Yutao Dong ◽  
Dan Li ◽  
Chengwei Gao ◽  
Yushan Liu ◽  
Jianmin Zhang

Self-assembled 3D urchin-like Ti0.8Sn0.2O2–rGO was fabricated by a one-step hydrothermal process as an anode material for high-rate and long cycle life LIBs.


1998 ◽  
Vol 15 (5) ◽  
pp. 505-509
Author(s):  
Tian-Cun Xiao ◽  
Hai-Tao Wang ◽  
Yu-Li Lu ◽  
Li-Dun An ◽  
Hong-Li Wang

CrystEngComm ◽  
2015 ◽  
Vol 17 (24) ◽  
pp. 4495-4501 ◽  
Author(s):  
Bin Yang ◽  
Lei Yu ◽  
Qi Liu ◽  
Jingyuan Liu ◽  
Wanlu Yang ◽  
...  

We synthesized the mushroom-like Ni3S2 with step by step growth that is the thin film growing on the nanorod arrays with one-step hydrothermal process, which is a novel ways to fabricate the multidimensional hierarchical electrode materials for high performance energy storage.


RSC Advances ◽  
2015 ◽  
Vol 5 (78) ◽  
pp. 63528-63536 ◽  
Author(s):  
Chongjun Zhao ◽  
Zhuomin Zhang ◽  
Qian Wang ◽  
Shudi Min ◽  
Xiuzhen Qian

A unique sandwich structure of Ni3S2/RGO/Ni3S2 was designed on nickel foam by a one-step hydrothermal process.


2021 ◽  
Vol 323 ◽  
pp. 129174
Author(s):  
Pengxu Cao ◽  
Guanghui Li ◽  
Hao Jiang ◽  
Xin Zhang ◽  
Jun Luo ◽  
...  

2019 ◽  
Vol 12 (01) ◽  
pp. 1850089
Author(s):  
Hou Lin Yu ◽  
Wenliang Shi ◽  
Shuaishuai Li ◽  
Junma Zhang ◽  
Xiaobo Zhang ◽  
...  

A facile, one-pot solvent-mediated hydrothermal process was adopted to prepare nickel sulfide nanoparticles decorated on reduced graphene oxide (NixSy/rGO) as electrocatalysts for hydrogen evolution reaction (HER). The designed solvent (ethylene glycol and deionized water) played a decisive role in controlling both crystalline phase and morphology of NixSy/rGO composites, leading to pure [Formula: see text]-NiS nanoparticles uniformly distributed on rGO sheets under suitable volume ratio of ethylene glycol and deionized water (2:1). The optimized [Formula: see text]-NiS/rGO showed prominent HER catalytic performance with a rather small Tafel slope of 93[Formula: see text]mV/decade and prominent current density of 10[Formula: see text]mA/cm2 at the overpotential of 177[Formula: see text]mV in alkaline environments when compared to pristine [Formula: see text]-NiS and NiS2/rGO catalysts. The excellent catalytic performance and long-term durability even after 8000 cycles confirmed the potential of [Formula: see text]-NiS/rGO composites as efficient electrocatalysts for HER in the alkaline media.


RSC Advances ◽  
2017 ◽  
Vol 7 (56) ◽  
pp. 35004-35011 ◽  
Author(s):  
Suling Yang ◽  
Gang Li ◽  
Chen Qu ◽  
Guifang Wang ◽  
Dan Wang

A new kind of ZnO nanoparticle/N-doped reduced graphene oxide nanocomposite (ZnONPs/N-rGO) was synthesized through a low temperature, low-cost and one step hydrothermal process.


Sign in / Sign up

Export Citation Format

Share Document