X-ray/red-light excited ZGGO:Cr,Nd nanoprobes for NIR-I/II afterglow imaging

2020 ◽  
Vol 49 (18) ◽  
pp. 6074-6083
Author(s):  
Rongyun Jiang ◽  
Jian Yang ◽  
Yangqi Meng ◽  
Duanting Yan ◽  
Chunguang Liu ◽  
...  
Keyword(s):  

NIR-I/II afterglow nanoprobes for deep-tissue autofluorescence-free bioimaging were developed based on the persistent energy transfer.

2020 ◽  
Vol 117 (45) ◽  
pp. 27962-27970
Author(s):  
Marcus V. Moreno ◽  
Nathan C. Rockwell ◽  
Manuel Mora ◽  
Andrew J. Fisher ◽  
J. Clark Lagarias

Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacteriumLeptolyngbyasp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3’s far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red–absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.


2014 ◽  
Vol 597 ◽  
pp. 117-120 ◽  
Author(s):  
Jia Yue Sun ◽  
Dian Peng Cui ◽  
Qiu Mei Di ◽  
Qi Guang Xu ◽  
Liu Han

A series of Na3YSi2O7: Eu3+, Sm3+ samples have been synthesized via solid-state reaction technique. The phase structure and luminescence properties are characterized using powder X-ray diffraction, photoluminescence excitation and emission spectra. Effective energy transfer occurs from Sm3+ to Eu3+ and Sm3+/Eu3+-codoped Na3YSi2O7 shows more intense red light compared to that of Eu3+-doped sample under UV light excitation.


2021 ◽  
pp. 2004391
Author(s):  
Youbin Li ◽  
Mingyang Jiang ◽  
Zhiming Deng ◽  
Songjun Zeng ◽  
Jianhua Hao
Keyword(s):  
Low Dose ◽  
X Ray ◽  

2014 ◽  
Vol 392-393 ◽  
pp. 45-50 ◽  
Author(s):  
V.A.G. Rivera ◽  
Y. Ledemi ◽  
M. El-Amraoui ◽  
Y. Messaddeq ◽  
E. Marega

2021 ◽  
pp. 2101174
Author(s):  
Xiaoting Zhao ◽  
Youbin Li ◽  
Linman Du ◽  
Zhiming Deng ◽  
Mingyang Jiang ◽  
...  

2021 ◽  
Author(s):  
Jing Yan ◽  
Chunyan Jiang ◽  
Yulun Xian ◽  
Jianbang Zhou ◽  
Hong Li ◽  
...  

A series of Tb3+- and Eu3+-doped Ca8ZnLu(PO4)7 (CZLP:Tb3+ and CZLP:Eu3+) as well as Ca8ZnTb(PO4)7:Eu3+ (CZTP:Eu3+) phosphors have been prepared via the traditional high-temperature solid-state reaction. X-ray powder diffraction (XRD) patterns...


2021 ◽  
Vol 317 ◽  
pp. 81-86
Author(s):  
Syariffah Nurathirah Syed Yaacob ◽  
Md. Rahim Sahar ◽  
Faizani Mohd Noor ◽  
Nur Liyana Amiar Rodin ◽  
Siti Khadijah Mohd Zain ◽  
...  

The spectroscopic performance of Er3+ doped glass at 0.55 mm emission contain different nanoparticles NPs have been comparatively evaluated. Glass containing 1.0 mol % of Er3+ doped with different NPs (Ag, Co and Fe ) have been prepared using melt quenching technique. X-ray diffraction analysis reveals the all the prepared samples are amorphous. The UV-Vis absorption spectra of all glasses show several prominent peaks at 525 nm, 660 nm, 801nm, 982 nm and 959 nm due to transition from ground state 4I15/2 to different excited of 2H11/2, 4F9/2, 4I9/2, 4I11/2, and 4I13/2. The emission of Er3+ at 0.55 mm for glass contain Ag NP shows significant enhancement about 3 folds up to 0.6 mol%. On the other hand, the emission of Er3+ at 0.55 mm for glass containing Fe NPs and Co NPs intensely quench probably due to the energy-transfer from Er3+ ion to NPs and magnetic contributions.


2014 ◽  
Vol 700 ◽  
pp. 113-116
Author(s):  
Yu Jie Chen ◽  
Feng Lan Han ◽  
Zhao Luo

Na2BaMgP2O8phosphors were synthesized by a standard solid state reaction and their luminescent properties were investigated. The phase structure was analyzed by X-ray powder diffraction measurement. Under the excitation of 365nm, Na2BaMgP2O8:Tb3+, Eu3+phosphors show two color bands of green and red color due to5D4−7F5transition of Tb3+ions and5D0−7F2transition of Eu3+ions, respectively. The emission intensity of Tb3+deceased with the increasing concentration of Eu3+, which verified that an effective energy transfer occurred from Tb3+to Eu3+in Na2BaMgP2O8host. The present study indicated that the phosphors have a high potential application in solid state lighting.


2008 ◽  
Vol 8 (11) ◽  
pp. 5776-5780 ◽  
Author(s):  
C. Manikyala Rao ◽  
V. Sudarsan ◽  
R. S. Ningthoujam ◽  
U. K. Gautam ◽  
R. K. Vatsa ◽  
...  

ZnGa2O4 nanoparticles doped with lanthanide ions (Tb3+ and Eu3+) were prepared at a low temperature of 120 °C based on urea hydrolysis in ethylene glycol medium. X-ray diffraction studies have confirmed that strain associated with nanoparticles changes as Tb3+ gets incorporated in the ZnGa2O4 lattice. Based on steady state emission and excitation studies of ZnGa2O4:Tb nanoparticles, it has been inferred that ZnGa2O4 host is characterized by a broad emission around 427 nm and there exists energy transfer between the host and Tb3+ ions. Unlike this, for ZnGa2O4:Eu nanoparticles, very poor energy transfer between the host and Eu3+ ions is observed. These nanoparticles when coated with ligands like oleic acid results in their improved dispersion in organic solvents like chloroform and dichloromethane.


2016 ◽  
Vol 1 (3) ◽  
pp. 145
Author(s):  
Nevy T. Putri ◽  
Sarianoferni Sarianoferni ◽  
Endah Wahjuningsih

Intraoral periapical radiograph examination is the additional examination which is the most widely used in Dentistry. This radiograph examination using an x-ray ionizing radiation with low LET (Linear Energy Transfer), and may affect submandibular salivary gland. Ionizing radiation exposure can cause damage by inducing a series of changes at the molecular and cellular level. This study aimed to prove the effects of x-ray ionizing radiation with low LET towards the catalase activity of Rattus norvegicus strain Wistar’s submandibular gland. The subjects were 28 male Wistar rats and divided into 4 groups (n=7). Three groups were exposed 4, 8 and 14 times to radiation with 0.002 µSv for each exposure. The catalase activity of each rat was examined by a spectrophotometer. Data were analyzed using one-way ANOVA followed by Bonferroni test. The results showed the average of catalase activity on Wistar rat’s submandibular gland, respectively for: 0.150±0.0895 (KK), 0.1405±0.0607 (K1), 0.1228±0.0290 (K2), 0.1227±0.0556 (K3). Data showed significant differences of catalase activity between test groups, but showed not significant differences of catalase activity between each groups of Rattus norvegicus strain Wistar’s submandibular gland. In this study concluded decreased catalase activity of Rattus norvegicus strain Wistar’s submandibular gland resulting from x-rays ionizing radiation by 4 times, 8 times and 14 times exposures.


Sign in / Sign up

Export Citation Format

Share Document