Release and metabolism of bound polyphenols from carrot dietary fiber and their potential activity in in vitro digestion and colonic fermentation

2020 ◽  
Vol 11 (7) ◽  
pp. 6652-6665 ◽  
Author(s):  
Ruihong Dong ◽  
Shuai Liu ◽  
Yuting Zheng ◽  
Xingjie Zhang ◽  
Zhicheng He ◽  
...  

Dietary fiber is a carrier of abundant polyphenols and the potential benefits have attracted increasing attention.

2021 ◽  
Vol 12 ◽  
Author(s):  
Irene Tomé-Sánchez ◽  
Ana Belén Martín-Diana ◽  
Elena Peñas ◽  
Juana Frias ◽  
Daniel Rico ◽  
...  

To enlarge the applications of whole wheat grain (WWG) and wheat bran (WB) as functional ingredients in foodstuffs that can promote human health, researchers have explored bioprocessing approaches to improve the bioaccessibility of phenolic compounds from these food matrices and, subsequently, their biological effects. The objective of this study was to compare the composition in nutrients, anti-nutrients, and bioactive compounds of WWG and WB, and their respective bioprocessed products: sprouted wheat (GERM) and WB hydrolysate (stabilized by spray-drying [SPD] and microencapsulated [MEC]). In addition, to evaluate the functional properties of these ingredients, the bioaccessibility of phenolic compounds and their potential antioxidant and anti-inflammatory activities were monitored in different digestion steps. GERM had increased amounts of insoluble dietary fiber, higher diversity of oligosaccharides, and higher concentration of monosaccharides, free phosphorous, and phenolic compounds than WWG. SPD had improved content of soluble dietary fiber, oligosaccharides, monosaccharides, free phosphorous, and phenolic compounds (vs. WB), whereas MEC was mainly composed of protein and had nearly 2-fold lower content of SPD components. All the ingredients showed lower amounts of phytic acid as compared with raw materials. In all samples, hydroxycinnamic acids were the most representative polyphenols followed by minor amounts of hydroxybenzoic acids and flavonoids. Gastrointestinal digestion of GERM, SPD, and MEC revealed high stability of total phenolic compounds in both gastric and intestinal phases. Hydroxycinnamic acids were the most bioaccessible compounds during digestion among the three bioprocessed wheat ingredients studied, although their bioaccessibility varied across ingredients. In this sense, the bioaccessibility of ferulic acid (FA) derivatives increased in GERM with progression of the digestion, while it was reduced in SPD and MEC up to the end of the intestinal phase. Microencapsulation of SPD with pea protein led to generally to lower bioaccessible amounts of phenolic acids. Comparison analysis of biological effects highlighted SPD for its most potent antioxidant effects in the gastrointestinal tract (3 out 4 antioxidant parameters with highest values), while no clear differences were observed with regard to in vitro anti-inflammatory activity. Overall, these results support the potential application of GERM, SPD, and MEC as functional and nutraceutical ingredients.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1495 ◽  
Author(s):  
Aldrine Kilua ◽  
Riri Nomata ◽  
Ryuji Nagata ◽  
Naoki Fukuma ◽  
Kenichiro Shimada ◽  
...  

The prevalence of many chronic diseases which have been associated with poor nutrition may be reduced by the positive modulation of colonic microbiota. In this study, we assess the effects of purple sweet potato polyphenols (PSP) in a mixed culture of swine fecal bacteria during in vitro colonic fermentation using pig colonic digest. Jar fermenters were used to conduct a small scale in vitro colonic fermentation experiments under the anaerobic condition for 48 h. Jar fermenters were assigned to one of the following groups: Cellulose, cellulose + PSP, inulin, and inulin + PSP. The present study revealed that the polyphenolic content of purple sweet potato could modulate the colonic microbiota by differentially increasing the population of beneficial bacteria and decreasing the pathogenic bacteria depending on cellulose and inulin. Accordingly, PSP might be a material conducive for improving the conditions for the fermentation of partly-fermentable dietary fiber. Besides, PSP was also responsible for the drastic reduction of putrefactive products, especially p-cresol to a significant level. Our results suggest that PSP could alter the microbial composition depending upon the fermentability of dietary fiber and has the potential to maintain a stable and healthy colonic environment that will ultimately alleviate chronic diseases development and confer health benefits to the host.


2016 ◽  
Vol 36 (2) ◽  
pp. 188-194 ◽  
Author(s):  
Gustavo VELDERRAIN-RODRÍGUEZ ◽  
Ana QUIRÓS-SAUCEDA ◽  
Gil MERCADO-MERCADO ◽  
Jesús Fernando AYALA-ZAVALA ◽  
Humberto ASTIAZARÁN-GARCÍA ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1836
Author(s):  
José Luis Ordoñez-Díaz ◽  
Alicia Moreno-Ortega ◽  
Francisco Javier Roldán-Guerra ◽  
Victor Ortíz-Somovilla ◽  
José Manuel Moreno-Rojas ◽  
...  

Mango (Mangifera indica L.), a fruit with sensorial attractiveness and extraordinary nutritional and phytochemical composition, is one of the most consumed tropical varieties in the world. A growing body of evidence suggests that their bioactive composition differentiates them from other fruits, with mango pulp being an especially rich and diverse source of polyphenols. In this study, mango pulp polyphenols were submitted to in vitro gastrointestinal digestion and colonic fermentation, and aliquots were analyzed by HPLC-HRMS. The main phenolic compounds identified in the mango pulp were hydroxybenzoic acid-hexoside, two mono-galloyl-glucoside isomers and vanillic acid. The release of total polyphenols increased after the in vitro digestion, with an overall bioaccessibility of 206.3%. Specifically, the most bioaccessible mango polyphenols were gallic acid, 3-O-methylgallic acid, two hydroxybenzoic acid hexosides, methyl gallate, 3,4-dihydroxybenzoic acid and benzoic acid, which potentially cross the small intestine reaching the colon for fermentation by the resident microbiota. After 48 h of fecal fermentation, the main resultant mango catabolites were pyrogallol, gallic and 3,4-dihydroxybenzoic acids. This highlighted the extensive transformation of mango pulp polyphenols through the gastrointestinal tract and by the resident gut microbiota, with the resultant formation of mainly simple phenolics, which can be considered as biomarkers of the colonic metabolism of mango.


2018 ◽  
Vol 9 (2) ◽  
pp. 1235-1244 ◽  
Author(s):  
Isabelle Yang ◽  
Guddarangavvanahally K. Jayaprakasha ◽  
Bhimanagouda Patil

Kale (Brassica oleracea) polyphenols and dietary fiber have key roles in bile acid binding, and these bile acids enhanced significanlty higher (69.4%) bioaccessibility of certain health-promoting polyphenolics.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1411 ◽  
Author(s):  
Amaia Iriondo-DeHond ◽  
Fresia Santillan Cornejo ◽  
Beatriz Fernandez-Gomez ◽  
Gema Vera ◽  
Eduardo Guisantes-Batan ◽  
...  

The bioaccessibility, metabolism, and excretion of lipids composing spent coffee grounds (SCGs) were investigated. An analysis of mycotoxins and an acute toxicity study in rats were performed for safety evaluation. Total fat, fatty acids, and diterpenes (cafestol and kahweol) were determined in SCGs and their digests obtained in vitro. A pilot repeated intake study was carried out in Wistar rats using a dose of 1 g SCGs/kg b.w. for 28 days. Fat metabolism was evaluated by analysis of total fat, cholesterol, and histology in liver. The dietary fiber effect of SCGs was measured radiographically. The absence of mycotoxins and toxicity was reported in SCGs. A total of 77% of unsaturated fatty acids and low amounts of kahweol (7.09 µg/g) and cafestol (414.39 µg/g) were bioaccessible after in vitro digestion. A significantly lower (p < 0.1) accumulation of lipids in the liver and a higher excretion of these in feces was found in rats treated with SCGs for 28 days. No lipid droplets or liver damage were observed by histology. SCGs acutely accelerated intestinal motility in rats. SCGs might be considered a sustainable, safe, and healthy food ingredient with potential for preventing hepatic steatosis due to their effect as dietary fiber with a high fat-holding capacity.


2020 ◽  
Vol 107 ◽  
pp. 105971
Author(s):  
Maoshen Chen ◽  
Liping Guo ◽  
John Nsor-Atindana ◽  
H. Douglas Goff ◽  
Wenxi Zhang ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1564 ◽  
Author(s):  
Luz M. Hernández-Maldonado ◽  
Francisco J. Blancas-Benítez ◽  
Victor M. Zamora-Gasga ◽  
Alicia P. Cárdenas-Castro ◽  
Juscelino Tovar ◽  
...  

Mango (Mangifera indica L.) is a tropical fruit which is considered to be a source of dietary fiber (DF) and phenolic compounds (PCs). In this study, high DF mango-based fruit bars were developed from whole mango (peel and pulp). The bars were evaluated for their nutritional composition, the bioaccesibility of PCs during gastrointestinal digestion, and the PCs metabolites profile after in vitro colonic fermentation. The amount of DF in a 30 g portion of mango bars was 9.5 g, i.e., 35% of the recommended daily intake. Phenolic acids such as gallic acid; cinnamic acids, such as ferulic, coumaric, and caffeic acids; flavonoids such as quercertin; and xanthones such as mangiferin and mangiferin gallate, were identified as the main PCs in the bars. The antioxidant capacity associated with the PCs profile, together with the high DF content are indicative of the potential functional features of these natural fruit bars. The bioaccesibility of PCs in the mango bar was 53.78%. During fermentation, the PCs were bioconverted mainly to hydroxyphenolic acids and the main short-chain fatty acid produced was acetic acid. The xanthone norathyriol was identified after 12 h of fermentation. This study on the digestion and colonic fermentation of mango-based bars using in vitro models provides hints of the potential physiological behavior of PCs associated with DF, which constitutes relevant information for further development of natural and health-promoting fruit-based bars.


Sign in / Sign up

Export Citation Format

Share Document