Stability of Enzyme-Modified Flavonoid C- and O-Glycosides from Common Buckwheat Sprout Extracts during In Vitro Digestion and Colonic Fermentation

Author(s):  
Davin Jang ◽  
Young Sung Jung ◽  
Hyunbin Seong ◽  
Mi-Seon Kim ◽  
Chan-Su Rha ◽  
...  
Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1836
Author(s):  
José Luis Ordoñez-Díaz ◽  
Alicia Moreno-Ortega ◽  
Francisco Javier Roldán-Guerra ◽  
Victor Ortíz-Somovilla ◽  
José Manuel Moreno-Rojas ◽  
...  

Mango (Mangifera indica L.), a fruit with sensorial attractiveness and extraordinary nutritional and phytochemical composition, is one of the most consumed tropical varieties in the world. A growing body of evidence suggests that their bioactive composition differentiates them from other fruits, with mango pulp being an especially rich and diverse source of polyphenols. In this study, mango pulp polyphenols were submitted to in vitro gastrointestinal digestion and colonic fermentation, and aliquots were analyzed by HPLC-HRMS. The main phenolic compounds identified in the mango pulp were hydroxybenzoic acid-hexoside, two mono-galloyl-glucoside isomers and vanillic acid. The release of total polyphenols increased after the in vitro digestion, with an overall bioaccessibility of 206.3%. Specifically, the most bioaccessible mango polyphenols were gallic acid, 3-O-methylgallic acid, two hydroxybenzoic acid hexosides, methyl gallate, 3,4-dihydroxybenzoic acid and benzoic acid, which potentially cross the small intestine reaching the colon for fermentation by the resident microbiota. After 48 h of fecal fermentation, the main resultant mango catabolites were pyrogallol, gallic and 3,4-dihydroxybenzoic acids. This highlighted the extensive transformation of mango pulp polyphenols through the gastrointestinal tract and by the resident gut microbiota, with the resultant formation of mainly simple phenolics, which can be considered as biomarkers of the colonic metabolism of mango.


2020 ◽  
Vol 11 (7) ◽  
pp. 6652-6665 ◽  
Author(s):  
Ruihong Dong ◽  
Shuai Liu ◽  
Yuting Zheng ◽  
Xingjie Zhang ◽  
Zhicheng He ◽  
...  

Dietary fiber is a carrier of abundant polyphenols and the potential benefits have attracted increasing attention.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2123
Author(s):  
Yong Sun ◽  
Fanghua Guo ◽  
Xin Peng ◽  
Kejun Cheng ◽  
Lu Xiao ◽  
...  

Tetrastigma hemsleyanum Diels et Gilg is a herbaceous perennial species distributed mainly in southern China. The Tetrastigma hemsleyanum root (THR) has been prevalently consumed as a functional tea or dietary supplement. In vitro digestion models, including colonic fermentation, were built to evaluate the release and stability of THR phenolics with the method of HPLC-QqQ-MS/MS and UPLC-Qtof-MS/MS. From the oral cavity, the contents of total phenolic and flavonoid began to degrade. Quercetin-3-rutinoside, quercetin-3-glucoside, kaempferol-3-rutinoside, and kaempferol-3-glucoside were metabolized as major components and they were absorbed in the form of glycosides for hepatic metabolism. On the other hand, the total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and glutathione (GSH) content were significantly increased, while malondialdehyde (MDA) content was decreased in plasma and tissues of rats treated with THR extract in the oxidative stress model. These results indicated that the THR extract is a good antioxidant substance and has good bioavailability, which can effectively prevent some chronic diseases caused by oxidative stress. It also provides a basis for the effectiveness of THR as a traditional functional food.


2017 ◽  
Vol 237 ◽  
pp. 453-460 ◽  
Author(s):  
Vanesa G. Correa ◽  
Geferson A. Gonçalves ◽  
Anacharis B. de Sá-Nakanishi ◽  
Isabel C.F.R. Ferreira ◽  
Lillian Barros ◽  
...  

LWT ◽  
2022 ◽  
pp. 113083
Author(s):  
Yineth Ruíz-García ◽  
Carolina Beres ◽  
Davy W.H. Chávez ◽  
Danielle C.de S. Pereira ◽  
Manuela C.P.A. Santiago ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3605 ◽  
Author(s):  
Antonio Tornero-Martínez ◽  
Rubén Cruz-Ortiz ◽  
María Eugenia Jaramillo-Flores ◽  
Perla Osorio-Díaz ◽  
Sandra Victoria Ávila-Reyes ◽  
...  

Soluble or fermentable fibre has prebiotic effects that can be used in the food industry to modify the composition of microbiota species to benefit human health. Prebiotics mostly target Bifidobacterium and Lactobacillus strains, among others, which can fight against chronic diseases since colonic fermentation produces short chain fatty acids (SCFAs). The present work studied the changes produced in the fibre and polyphenolic compounds during in vitro digestion of gel (AV) and a polysaccharide extract (AP) from Aloe vera, after which, these fractions were subjected to in vitro colonic fermentation to evaluate the changes in antioxidant capacity and SCFAs production during the fermentation. The results showed that the phenolic compounds increased during digestion, but were reduced in fermentation, as a consequence, the antioxidant activity increased significantly in AV and AP after the digestion. On the other hand, during in vitro colon fermentation, the unfermented fibre of AV and AP responded as lactulose and the total volume of gas produced, which indicates the possible use of Aloe vera and polysaccharide extract as prebiotics.


Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Maria Madalena Costa Sobral ◽  
Tiago Gonçalves ◽  
Zita E. Martins ◽  
Christine Bäuerl ◽  
Erika Cortés-Macías ◽  
...  

Aflatoxin B1 (AFB1) and ochratoxin A (OTA) naturally co-occur in several foods, but no studies have followed the fate of mycotoxins’ interactions along the gastrointestinal tract using in vitro digestion models. This study used a novel semi-dynamic model that mimics gradual acidification and gastric emptying, coupled with a static colonic fermentation phase, in order to monitor mycotoxins’ bioaccessibility by the oral route. AFB1 and OTA bioaccessibility patterns differed in single or co-exposed scenarios. When co-exposed (MIX meal), AFB1 bioaccessibility at the intestinal level increased by ~16%, while OTA bioaccessibility decreased by ~20%. Additionally, a significant increase was observed in both intestinal cell viability and NO production. With regard to mycotoxin–probiotic interactions, the MIX meal showed a null effect on Lactobacillus and Bifidobacterium strain growth, while isolated AFB1 reduced bacterial growth parameters. These results were confirmed at phylum and family levels using a gut microbiota approach. After colonic fermentation, the fecal supernatant did not trigger the NF-kB activation pathway, indicating reduced toxicity of mycotoxins. In conclusion, if single exposed, AFB1 will have a significant impact on intestinal viability and probiotic growth, while OTA will mostly trigger NO production; in a co-exposure situation, both intestinal viability and inflammation will be affected, but the impact on probiotic growth will be neglected.


Sign in / Sign up

Export Citation Format

Share Document