High-mobility In and Ga co-doped ZnO nanowires for high-performance transistors and ultraviolet photodetectors

Nanoscale ◽  
2020 ◽  
Vol 12 (30) ◽  
pp. 16153-16161
Author(s):  
Fangzhou Li ◽  
You Meng ◽  
Xiaolin Kang ◽  
SenPo Yip ◽  
Xiuming Bu ◽  
...  

In and Ga co-doping does not only enhance the carrier concentration but also suppresses the formation of oxygen vacancy defects within ZnO nanowires, enabling high-performance transistors and ultraviolet photodetectors.

Vacuum ◽  
2021 ◽  
pp. 110488
Author(s):  
Huying Yan ◽  
Jian Xue ◽  
Wenjing Chen ◽  
Jialing Tang ◽  
Ling zhong ◽  
...  

Chemosensors ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 61 ◽  
Author(s):  
Fatemeh Moosavi ◽  
Mohammad Ebrahim Bahrololoom ◽  
Ramin Kamjou ◽  
Ali Mirzaei ◽  
Salvatore Gianluca Leonardi ◽  
...  

In this study, the gas sensing properties of Co-doped ZnO nanoparticles (Co-ZnO NPs) synthesized via a simple sol-gel method are reported. The microstructure and morphology of the synthesized Co-ZnO NPs were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. Co-ZnO NPs were then used for developing a conductometric gas sensor for the detection, at mild temperature, of low concentration of hydrogen (H2) in air. To evaluate the selectivity of the sensor, the sensing behavior toward some VOCs such as ethanol and acetone, which represent the most important interferents for breath hydrogen analysis, was also investigated in detail. Results reported demonstrated better selectivity toward hydrogen of the Co-ZnO NPs sensor when compared to pure ZnO. The main factors contributing to this behavior, i.e., the transition from n-type behavior of pristine ZnO to p-type behavior upon Co-doping, the modification of oxygen vacancies and acid-base characteristics have been considered. Hence, this study highlights the importance of Co doping of ZnO to realize a high performance breath hydrogen sensor.


2015 ◽  
Vol 117 (21) ◽  
pp. 214310 ◽  
Author(s):  
A. Simimol ◽  
Aji A. Anappara ◽  
S. Greulich-Weber ◽  
Prasanta Chowdhury ◽  
Harish C. Barshilia

2021 ◽  
Vol 23 (3) ◽  
pp. 2368-2376
Author(s):  
A. Di Trolio ◽  
A. Amore Bonapasta ◽  
C. Barone ◽  
A. Leo ◽  
G. Carapella ◽  
...  

Co doping increases the ZnO resistivity (ρ) at high T (HT), whereas it has an opposite effect at low T (LT). H balances the Co effects by neutralizing the ρ increase at HT and strengthening its decrease at LT.


2021 ◽  
Vol 118 (12) ◽  
pp. 123504
Author(s):  
Ablat Abliz ◽  
Xiongxiong Xue ◽  
Xingqiang Liu ◽  
Guoli Li ◽  
Liming Tang

2019 ◽  
Vol 97 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Ye Zhao ◽  
Fan Tong ◽  
Mao Hua Wang

Pure and cobalt-doped ZnO nanoparticles (2.5, 5, 7.5, and 10 atom % Co) are synthesized by sol–gel method. The as-synthesized nanoparticles are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM) analysis. The nanoparticles of 0, 2.5, and 5 atom % Co-doped ZnO exhibited hexagonal wurtzite structure and have no other phases. Moreover, the (101) diffraction peaks position of Co-doped ZnO shift toward a smaller value of diffraction angle compared with pure ZnO powders. The results confirm that Co ions were well incorporated into ZnO crystal lattice. Simultaneously, Co doping also inhibited the growth of particles, and the crystallite size decreased from 43.11 nm to 36.63 nm with the increase in doping concentration from 0 to 10 atom %. The values of the optical band gap of all Co-doped ZnO nanoparticles gradually decreased from 3.09 eV to 2.66 eV with increasing Co content. Particular, the dielectric constant of all Co-doped ZnO ceramics gradually increased from 1.62 × 103 to 20.52 × 103, and the dielectric loss decreased from 2.36 to 1.28 when Co content increased from 0 to 10 atom %.


Nanoscale ◽  
2017 ◽  
Vol 9 (13) ◽  
pp. 4536-4543 ◽  
Author(s):  
Buddha Deka Boruah ◽  
Shanmukh Naidu Majji ◽  
Abha Misra

2010 ◽  
Vol 154-155 ◽  
pp. 124-129
Author(s):  
Zhen Zhen Weng ◽  
Zhi Gao Huang ◽  
Wen Xiong Lin

The interatomic exchange interactions and the electronic structure of Co-doped ZnO with and without oxygen vacancy have been investigated by the first-principles calculations based on density functional theory. It is found that the oxygen vacancy can strengthen the ferromagnetic exchange interaction between Co atoms and might be available for carrier mediation. The oxygen vacancy near to the Co atoms is more favorable for the ferromagnetic ground state.


2014 ◽  
Vol 6 (2) ◽  
pp. 1288-1293 ◽  
Author(s):  
Fei Wang ◽  
Jung-Hun Seo ◽  
Zhaodong Li ◽  
Alexander V. Kvit ◽  
Zhenqiang Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document