Gold nanocrystal anchored In2O3 hollow nanospheres for N2 photofixation to ammonia

2020 ◽  
Vol 7 (15) ◽  
pp. 2778-2782
Author(s):  
Ri Han ◽  
Shufang Chang ◽  
Xiaoxiang Xu

Hollow In2O3 nanospheres anchored with Au nanocrystals have been fabricated and are active for N2 photofixation into ammonia. Hollow microstructures and Au nanocrystals improve light absorption and N2 adsorption and boost charge generation in In2O3.

Author(s):  
Adi Prasetio ◽  
Soyeon Kim ◽  
Muhammad Jahandar ◽  
Dong Chan Lim

AbstractIncorporating localized surface plasmon resonance (LSPR) into organic solar cells (OSCs) is a popular method for improving the power conversion efficiency (PCE) by introducing better light absorption. In this work, we designed a one-pot synthesis of Ag@SiO2@AuNPs dual plasmons and observed an immense increase in light absorption over a wide range of wavelengths. Ag@SiO2 plays the main role in enhancing light absorption near the ultraviolet band. The silica shell can also further enhance the LSP resonance effect and prevent recombination on the surface of AgNPs. The AuNPs on the Ag@SiO2 shell exhibited strong broad visible-light absorption due to LSP resonance and decreased light reflectance. By utilizing Ag@SiO2@AuNPs, we could enhance the light absorption and photoinduced charge generation, thereby increasing the device PCE to 8.57% and Jsc to 17.67 mA cm−2, which can be attributed to the enhanced optical properties. Meanwhile, devices without LSPR nanoparticles and Ag@SiO2 LSPR only showed PCEs of 7.36% and 8.18%, respectively.


2008 ◽  
Vol 128 (5) ◽  
pp. 732-737
Author(s):  
Hiroyuki Ichikawa ◽  
Masashi Ito ◽  
Chie Fukuda ◽  
Kotaro Hamada ◽  
Akira Yamaguchi ◽  
...  

2008 ◽  
Vol 128 (4) ◽  
pp. 216-222
Author(s):  
Hirokazu Suzuki ◽  
Yasuo Sekii ◽  
Kazuo Noguchi ◽  
Koichi Shimura ◽  
Takashi Maeno

2003 ◽  
Vol 771 ◽  
Author(s):  
C. Gadermaier ◽  
G. Cerullo ◽  
C. Manzoni ◽  
U. Scherf ◽  
E.J.W. List ◽  
...  

AbstractIn a novel modification of transient differential transmission spectroscopy, the first excited state S1 is reexcited via a second laser pulse towards a higher lying state Sn. The dynamics of the relaxation of this state Sn as well as the states created from Sn are revealed by a broad-band probe pulse.We find that the charge carrier generation efficiency from Sn is higher compared to S1. The push and probe durations below 20 fs enable the temporal resolution of the ultrafast relaxation of the Sn state and enables us to identify the two main contributions to enhanced charge generation from Sn, energy migration towards sites of high dissociation probability, and exciton dissociation during vibrational relaxation.


1995 ◽  
Vol 23 (4) ◽  
pp. 238-255 ◽  
Author(s):  
E. H. Sakai

Abstract The contact conditions of a tire with the road surface have a close relationship to various properties of the tire and are among the most important characteristics in evaluating the performance of the tire. In this research, a new measurement device was developed that allows the contact stress distribution to be quantified and visualized. The measuring principle of this device is that the light absorption at the interface between an optical prism and an evenly ground or worn rubber surface is a function of contact pressure. The light absorption can be measured at a number of points on the surface to obtain the pressure distribution. Using this device, the contact pressure distribution of a rubber disk loaded against a plate was measured. It was found that the pressure distribution was not flat but varied greatly depending upon the height and diameter of the rubber disk. The variation can be explained by a “spring” effect, a “liquid” effect, and an “edge” effect of the rubber disk. Next, the measurement and image processing techniques were applied to a loaded tire. A very high definition image was obtained that displayed the true contact area, the shape of the area, and the pressure distribution from which irregular wear was easily detected. Finally, the deformation of the contact area and changes in the pressure distribution in the tread rubber block were measured when a lateral force was applied to the loaded tire.


2020 ◽  
Vol 20 (3) ◽  
Author(s):  
Leonardo Cecchetti ◽  
Claudia Bussotti ◽  
Sabrina Fabris ◽  
Alvaro Pacifici
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document