scholarly journals The preparation of a difunctional porous β-tricalcium phosphate scaffold with excellent compressive strength and antibacterial properties

RSC Advances ◽  
2020 ◽  
Vol 10 (47) ◽  
pp. 28397-28407
Author(s):  
Long Qin ◽  
Jiang Yi ◽  
Lai Xuefei ◽  
Liao Li ◽  
Xie Kenan ◽  
...  

Silver nanoparticles and HAp particles were orderly coated on the surface of G-β-TCP scaffold. So the composite had good compression strength and antibacterial property.

2016 ◽  
Vol 27 (5) ◽  
pp. 508-514 ◽  
Author(s):  
Fernando Vazquez-Garcia ◽  
◽  
Mário Tanomaru-Filho ◽  
Gisselle Moraima Chávez-Andrade ◽  
Roberta Bosso-Martelo ◽  
...  

Abstract Mineral trioxide aggregate (MTA) and Portland cement (PC) are calcium silicate cements. They have similar physicochemical, mechanical and biological properties. The addition of zirconium oxide (ZrO2) to PC provides radiopacity. Silver nanoparticles (AgNPs) may improve some properties of cements. The aim of this study was to evaluate the effect of AgNPs on physicochemical/mechanical properties and antibacterial activity of white MTA (WMTA) and PC associated with ZrO2. The following materials were evaluated: WMTA; PC 70% + ZrO2 30%; WMTA+ AgNPs; and PC 70% + ZrO2 30% + AgNPs. The study evaluated radiopacity, setting time, pH, compressive strength and solubility. For radiopacity analysis, radiographs were made alongside an aluminum (Al) step wedge. To evaluate the antibacterial activity, direct contact test was performed on planktonic cells and Enterococcus faecalis biofilm induced on bovine root dentin for 14 days. The experimental periods were 5 and 15 h. Data were obtained as CFU mL-1. The obtained data were submitted to ANOVA and Tukey tests (p<0.05). The addition of AgNPs to WMTA increased the pH, lowered the solubility and the initial and final setting times. The addition of AgNPs to PC/ZrO2 maintained the pH, lowered the solubility, and increased the setting time and compressive strength. The radiopacity of all materials was higher than 4 mmAl. The addition of AgNPs promoted an increase in antibacterial activity for calcium silicate cements and favored the physicochemical and mechanical properties of the materials.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 151
Author(s):  
Xinrui Wang ◽  
Hongyong Luo ◽  
Weihua Zheng ◽  
Xinling Wang ◽  
Haijun Xiao ◽  
...  

The rapid development of nanotechnology and its widespread use have given rise to serious concerns over the potential adverse impacts of nanomaterials on the Earth’s ecosystems. Among all the nanomaterials, silver nanoparticles (AgNPs) are one of the most extensively used nanomaterials due to their excellent antibacterial property. However, the toxic mechanism of AgNPs in nature is still unclear. One of the questions under debate is whether the toxicity is associated with the size of AgNPs or the silver ions released from AgNPs. In our previous study, a sub-micron hybrid sphere system with polydopamine-stabilized AgNPs (Ag@PDS) was synthesized through a facile and green method, exhibiting superior antibacterial properties. The current study aims to explore the unique toxicity profile of this hybrid sphere system by studying its effect on germination and early growth of Lolium multiflorum, with AgNO3 and 15 nm AgNPs as a comparison. The results showed the seed germination was insensitive/less sensitive to all three reagents; however, vegetative growth was more sensitive. Specifically, when the Ag concentration was lower than 40 mg/L, Ag@PDS almost had no adverse effects on the root and shoot growth of Lolium multiflorum seeds. By contrast, when treated with AgNO3 at a lower Ag concentration of 5 mg/L, the plant growth was inhibited significantly, and was reduced more in the case of AgNP treatment at the same Ag concentration. As the exposures of Ag@PDS, AgNO3, and AgNPs increased, so did the Ag content in the root and shoot. In general, Ag@PDS was proven to be a potential useful hybrid material that retains antibacterial property with light phytotoxicity.


Holzforschung ◽  
2017 ◽  
Vol 71 (5) ◽  
pp. 445-454 ◽  
Author(s):  
Elyas Afra ◽  
Parvaneh Narchin

Abstract Silver-clay nanohybrids based on silver nanoparticles (AgNPs) with montmorillonit (MMT) and milled MMT, shortly AgMMTnano and AgMMTmilled, have been prepared to improve the performance of antibacterial properties of paper. The results obtained by dynamic light scattering indicated the presence of silver particles in the nanometer range, which have a great accumulation tendency. The results of AAS and ICP-AES tests showed that nanosilver amount in the AgMMTmilled was doubled compared to the AgMMTnano, but according to the EDX results, the amount of nanosilver in paper treated with the former was less than in the latter. FE-SEM images showed that the dimensions of deposited nanosilver on the surface of clay were smaller than in case of AgNPs alone. Papers treated with nanohybrids had better antibacterial properties compared to that prepared by naked nanosilver. It was also found that the antibacterial property of papers treated with AgMMTnano were more stable during three-stage tests compared to those with AgMMTmilled. Nanohybrids with Ag conc. more than 15 ppm, especially hybrids with Ag conc. of 50 ppm, result in a significant improvement in antibacterial properties of paper. It can be concluded that silver-clay nanohybrid with a 25-ppm concentration of nanosilver could be the best and most economic antibacterial component.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


2021 ◽  
Vol 9 (6) ◽  
pp. 270-277
Author(s):  
L. T. Liu ◽  
Y. Z. Li ◽  
K. P. Yu ◽  
M. Y. Zhu ◽  
H. Jiang ◽  
...  

Author(s):  
Inna V. Fadeeva ◽  
Margarita A. Goldberg ◽  
Ilya I. Preobrazhensky ◽  
Georgy V. Mamin ◽  
Galina A. Davidova ◽  
...  

AbstractFor bone replacement materials, osteoconductive, osteoinductive, and osteogenic properties are desired. The bacterial resistance and the need for new antibacterial strategies stand among the most challenging tasks of the modern medicine. In this work, brushite cements based on powders of Zinc (Zn) (1.4 wt%) substituted tricalcium phosphate (β-TCP) and non-substituted β-TCP were prepared and investigated. Their initial and final phase composition, time of setting, morphology, pH evolution, and compressive strength are reported. After soaking for 60 days in physiological solution, the cements transformed into a mixture of brushite and hydroxyapatite. Antibacterial activity of the cements against Enterococcus faecium, Escherichia coli, and Pseudomonas aeruginosa bacteria strains was attested. The absence of cytotoxicity of cements was proved for murine fibroblast NCTC L929 cells. Moreover, the cell viability on the β-TCP cement containing Zn2+ ions was 10% higher compared to the β-TCP cement without zinc. The developed cements are perspective for applications in orthopedics and traumatology.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 678
Author(s):  
Abdallah S. Abdelsattar ◽  
Rana Nofal ◽  
Salsabil Makky ◽  
Anan Safwat ◽  
Amera Taha ◽  
...  

The emergence and evolution of antibiotic-resistant bacteria is considered a public health concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity rates in humans, animals, and poultry annually. In this work, we developed a combination of silver nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial growth. The synthesized AgNPs with propolis were characterized by testing their color change from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with significantly enhanced antibacterial properties and therapeutic performance.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3854
Author(s):  
Joanna Czechowska ◽  
Ewelina Cichoń ◽  
Anna Belcarz ◽  
Anna Ślósarczyk ◽  
Aneta Zima

Bioactive, chemically bonded bone substitutes with antibacterial properties are highly recommended for medical applications. In this study, biomicroconcretes, composed of silicon modified (Si-αTCP) or non-modified α-tricalcium phosphate (αTCP), as well as hybrid hydroxyapatite/chitosan granules non-modified and modified with gold nanoparticles (AuNPs), were designed. The developed biomicroconcretes were supposed to combine the dual functions of antibacterial activity and bone defect repair. The chemical and phase composition, microstructure, setting times, mechanical strength, and in vitro bioactive potential of the composites were examined. Furthermore, on the basis of the American Association of Textile Chemists and Colorists test (AATCC 100), adapted for chemically bonded materials, the antibacterial activity of the biomicroconcretes against S. epidermidis, E. coli, and S. aureus was evaluated. All biomicroconcretes were surgically handy and revealed good adhesion between the hybrid granules and calcium phosphate-based matrix. Furthermore, they possessed acceptable setting times and mechanical properties. It has been stated that materials containing AuNPs set faster and possess a slightly higher compressive strength (3.4 ± 0.7 MPa). The modification of αTCP with silicon led to a favorable decrease of the final setting time to 10 min. Furthermore, it has been shown that materials modified with AuNPs and silicon possessed an enhanced bioactivity. The antibacterial properties of all of the developed biomicroconcretes against the tested bacterial strains due to the presence of both chitosan and Au were confirmed. The material modified simultaneously with AuNPs and silicon seems to be the most promising candidate for further biological studies.


Sign in / Sign up

Export Citation Format

Share Document