scholarly journals A highly sensitive ppb-level H2S gas sensor based on fluorophenoxy-substituted phthalocyanine cobalt/rGO hybrids at room temperature

RSC Advances ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 5993-6001
Author(s):  
Bin Wang ◽  
Xiaolin Wang ◽  
ZhiJiang Guo ◽  
Shijie Gai ◽  
Yong Li ◽  
...  

Highly sensitive gas sensing materials are of great importance for environmental pollution monitoring.

RSC Advances ◽  
2019 ◽  
Vol 9 (64) ◽  
pp. 37518-37525 ◽  
Author(s):  
ZhiJiang Guo ◽  
Bin Wang ◽  
Xiaolin Wang ◽  
Yong Li ◽  
Shijie Gai ◽  
...  

Highly sensitive gas sensing materials are of great importance for environmental pollution monitoring.


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3815
Author(s):  
Renyun Zhang ◽  
Magnus Hummelgård ◽  
Joel Ljunggren ◽  
Håkan Olin

Metal-semiconductor junctions and interfaces have been studied for many years due to their importance in applications such as semiconductor electronics and solar cells. However, semiconductor-metal networks are less studied because there is a lack of effective methods to fabricate such structures. Here, we report a novel Au–ZnO-based metal-semiconductor (M-S)n network in which ZnO nanowires were grown horizontally on gold particles and extended to reach the neighboring particles, forming an (M-S)n network. The (M-S)n network was further used as a gas sensor for sensing ethanol and acetone gases. The results show that the (M-S)n network is sensitive to ethanol (28.1 ppm) and acetone (22.3 ppm) gases and has the capacity to recognize the two gases based on differences in the saturation time. This study provides a method for producing a new type of metal-semiconductor network structure and demonstrates its application in gas sensing.


2021 ◽  
Author(s):  
Kediliya Wumaier ◽  
Gulgina Mamtmin ◽  
Qingrong Ma ◽  
Asiya Maimaiti ◽  
Patima Nizamidin ◽  
...  

AbstractThe detection of hydrogen sulfide (H2S) is essential because of its toxicity and abundance in the environment. Hence, there is an urgent requisite to develop a highly sensitive and economical H2S detection system. Herein, a zinc phthalocyanine (ZnPc) thin film-based K+-exchanged optical waveguide (OWG) gas sensor was developed for H2S detection by using spin coating. The sensor showed excellent H2S sensing performance at room temperature with a wide linear range (0.1 ppm–500 ppm), reproducibility, stability, and a low detection limit of 0.1 ppm. The developed sensor showed a significant prospect in the development of cost-effective and highly sensitive H2S gas sensors.


2015 ◽  
Vol 44 (17) ◽  
pp. 7911-7916 ◽  
Author(s):  
Junlong Tian ◽  
Feng Pan ◽  
Ruiyang Xue ◽  
Wang Zhang ◽  
Xiaotian Fang ◽  
...  

A tin oxide multi-tube array with a parallel effect was fabricated, which exhibited high sensitivity to H2S gas at room temperature.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2919 ◽  
Author(s):  
Monika Kwoka ◽  
Michal Borysiewicz ◽  
Pawel Tomkiewicz ◽  
Anna Piotrowska ◽  
Jacek Szuber

In this paper a novel type of a highly sensitive gas sensor device based on the surface photovoltage effect is described. It is based on the Kelvin probe approach. Porous ZnO nanostructured thin films deposited by the direct current (DC) reactive magnetron sputtering method are used as the active gas sensing electrode material. Crucially, the obtained gas sensing material exhibited a nanocoral surface morphology and surface Zn to O non-stoichiometry with respect to its bulk mass. Among other responses, the demonstrated SPV gas sensor device exhibits a high response to an NO2 concentration as low as 1 ppm, with a signal to noise ratio of about 50 and a fast response time of several seconds under room temperature conditions.


RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5618-5628
Author(s):  
Wenkai Jiang ◽  
Xinwei Chen ◽  
Tao Wang ◽  
Bolong Li ◽  
Min Zeng ◽  
...  

A high performance gas sensor based on a metal phthalocyanine/graphene quantum dot hybrid material was fabricated for NO2 detection at room-temperature.


Author(s):  
Monika Kwoka ◽  
Michal A. Borysiewicz ◽  
Pawel Tomkiewicz ◽  
Anna Piotrowska ◽  
Jacek Szuber

In this paper a novel type of a highly sensitive gas sensor device based on the surface photovoltage effect is described. The developed surface photovoltage gas sensor is based on a reverse Kelvin probe approach. As the active gas sensing electrode the porous ZnO nanostructured thin films are used deposited by the direct current (DC) reactive magnetron sputtering method exhibiting the nanocoral surface morphology combined with an evident surface nonstoichiometry related to the unintentional surface carbon and water vapor contaminations. Among others, the demonstrated SPV gas sensor device exhibits a high sensitivity of 1 ppm to NO2 with a signal to noise ratio of about 50 and a fast response time of several seconds under the room temperature conditions.


2008 ◽  
Vol 129 (2) ◽  
pp. 888-895 ◽  
Author(s):  
Nguyen Van Hieu ◽  
Luong Thi Bich Thuy ◽  
Nguyen Duc Chien

Sign in / Sign up

Export Citation Format

Share Document