High-performance and thermostable wire supercapacitors using mesoporous activated graphene deposited on continuous multilayer graphene

Author(s):  
TaeGyeong Lim ◽  
Ba Trung Ho ◽  
Ji Won Suk

Highly porous activated graphene coated on CVD-graphene/Cu wires enables high-performance wire supercapacitors with enhanced thermal and chemical stability.

2019 ◽  
Vol 48 (1) ◽  
pp. 278-284 ◽  
Author(s):  
Dongmei Wang ◽  
Zihua Liu ◽  
Lili Xu ◽  
Chunxia Li ◽  
Dian Zhao ◽  
...  

Porous In/Tb-CBDA has been successfully synthesized in the light of the heterometallic cooperative crystallization (HCC) approach. In/Tb-CBDA with high thermal and chemical stability exhibited high performance for gas storage and separation.


2021 ◽  
Vol 21 (7) ◽  
pp. 3996-3999
Author(s):  
Sunwoo Park ◽  
Seokwoo Kang ◽  
Hokyeom Kim ◽  
Sanshin Park ◽  
Hyukmin Kwon ◽  
...  

In this study, a blue photoresist with the hybrid dye-pigment system was developed by mixing xanthene-based dye (XPDIA) and blue pigment 15:6 (1:1, 5 wt% of total mixture amount) in order to develop high-performance image sensors with high thermal and chemical stability. The colorant used in this study has the nano-sized particle of around 100 nm and the physical property is related with the photonic property in image sensor application such as the cameras of mobile phone, car black box, security, etc. The hybrid dye-pigment system showed a high transmittance of more than 90% at 450 nm, and Δab showed very low color difference of 0.52. In solvent resistance, high transmittance of 90% was perfectly maintained, and Δab showed low color difference of 1.08. Migration test result exhibited no change at all after dipping in PGMEA transmittance spectrum. These results are due to the high absorption optical properties of XPDIA dye in the HDPS and the high thermal and chemical stability properties of the PB15:6 pigment. As a result, it was confirmed that the mixed blue hybrid spin coating film exhibited excellent thermal and chemical stability as well as good optical property.


2021 ◽  
Author(s):  
Hao Liu ◽  
Boran Li ◽  
Yayun Zhao ◽  
Chunlong Kong ◽  
Chen Zhou ◽  
...  

A Zr-based metal-organic framework (MOF-801) with high thermal and chemical stability was prepared by solvethermal synthesis method. Notably, MOF-801 exhibits high separation selectivity for C3H8/CH4 and C2H6/CH4, making it possible...


2021 ◽  
Vol 21 (9) ◽  
pp. 4675-4679
Author(s):  
Sunwoo Park ◽  
Yeonkyu Jeong ◽  
Seokwoo Kang ◽  
Sangshin Park ◽  
Hyukmin Kwon ◽  
...  

In this study, a triarylmethine derivative of DMCEBA-BTSA with the high thermal and chemical stability was newly synthesized in order to develop a high-performance image sensor. It showed a high transmittance of more than 80% at 450 nm and △Eab showed a very low color difference of 2.32 after thermal treatment. In solvent resistance, transmittance of 90% was not changed and △Eab showed a low color difference of 0.67 before and after solvent dipping. As a results of the migration test, there was no change at all after dipping in the PGMEA transmittance spectrum. It was confirmed that the newly synthesized blue colorant exhibited excellent thermal and chemical stability and it could be applied to image sensor color filter application as the blue color.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Myungwoo Son ◽  
Jaewon Jang ◽  
Yongsu Lee ◽  
Jungtae Nam ◽  
Jun Yeon Hwang ◽  
...  

AbstractHere, we demonstrate the fabrication of a Cu-graphene heterostructure interconnect by the direct synthesis of graphene on a Cu interconnect with an enhanced performance. Multilayer graphene films were synthesized on Cu interconnect patterns using a liquid benzene or pyridine source at 400 °C by atmospheric pressure chemical vapor deposition (APCVD). The graphene-capped Cu interconnects showed lower resistivity, higher breakdown current density, and improved reliability compared with those of pure Cu interconnects. In addition, an increase in the carrier density of graphene by doping drastically enhanced the reliability of the graphene-capped interconnect with a mean time to failure of >106 s at 100 °C under a continuous DC stress of 3 MA cm−2. Furthermore, the graphene-capped Cu heterostructure exhibited enhanced electrical properties and reliability even if it was a damascene-patterned structure, which indicates compatibility with practical applications such as next-generation interconnect materials in CMOS back-end-of-line (BEOL).


2020 ◽  
Vol 8 (27) ◽  
pp. 13619-13629 ◽  
Author(s):  
Asif Abdullah Khan ◽  
Md Masud Rana ◽  
Guangguang Huang ◽  
Nanqin Mei ◽  
Resul Saritas ◽  
...  

A high-performance perovskite/polymer piezoelectric nanogenerator for next generation self-powered wireless micro/nanodevices.


2011 ◽  
Vol 287-290 ◽  
pp. 1420-1423 ◽  
Author(s):  
Wei Xing ◽  
Xiao Li ◽  
Xiu Li Gao ◽  
Shu Ping Zhuo

Highly porous carbons were prepared from sunflower seed shell (SSS) by chemical activation and used as electrode material for electrochemical double layer capacitor (EDLC). The surface area and pore structure of the porous carbons are characterized intensively using N2 adsorption technique. The results show that the pore-structure of the carbons is closely related to activation temperature. Electrochemical measurements show that the carbons have excellent capacitive behavior and high capacitance retention ratio at high drain current, which is due to that there are both abundant macroscopic pores and micropore surface in the texture of the carbons. More importantly, the capacitive performances of these carbons are much better than ordered mesoporous carbons, thus highlighting the success of preparing high performance electrode material for EDLC from SSS.


Sign in / Sign up

Export Citation Format

Share Document