Long-life Zinc Electrode Achieved by Oxygen Plasma Functionalization

2022 ◽  
Author(s):  
Minghui Qiu ◽  
Hongqi Liu ◽  
Jinbin Luo ◽  
Benjamin Tawiah ◽  
Shaohai Fu ◽  
...  

A facile oxygen plasma treatment strategy is proposed to promote zinc dendrite inhibition by modifying the surface oxygen functional groups. The plasma-treated zinc electrode achieved an elongated working lifespan of...

2016 ◽  
Vol 23 (01) ◽  
pp. 1550089 ◽  
Author(s):  
K. VIGNESH ◽  
K. A. VIJAYALAKSHMI ◽  
N. KARTHIKEYAN

Bamboo charcoal (BC) accompanied silver (Ag) nanocomposite is synthesized through sol–gel method. The produced BC/Ag nanocomposite was surface modified by air and oxygen plasma treatments. Silver ions (Ag[Formula: see text]) will serve to improve the antibacterial activity as well as the surface area of BC. Plasma treatment has improved the surface functional groups, crystalline intensity and antibacterial activity of the prepared nanocomposite. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies show that Ag nanoparticles have good agreement with BC and the particle size has a mean diameter of 20–40[Formula: see text]nm. We observe the carboxyl functional groups in Fourier transform infrared spectroscopy (FTIR) after the oxygen plasma treatment. Moreover surface area and adsorption were analyzed by using the Brunauer, Emmett and Teller (BET) surface area ([Formula: see text]) and UV–Vis spectroscopy.


2008 ◽  
Vol 373-374 ◽  
pp. 430-433 ◽  
Author(s):  
Ping Chen ◽  
Jing Wang ◽  
Cheng Shuang Zhang ◽  
Chun Lu ◽  
Zhen Feng Ding ◽  
...  

Armos fiber (F-12 aramid fiber in paper) was provided with broad application foreground as reinforcement material for advanced composites in aviation and spaceflight field, due to its outstanding properties, such as high modulus, high strength, high temperature resistance, erosion resistance and so on. However, the exertion of property was still limited by slippery surface, low surface energy and weak interfacial adhesion performance. In this study, the effects of oxygen plasma treatment time on polar functional groups introduced onto the fiber surface, surface free energy and surface topographic images were discussed by X-ray photoelectron spectroscopy (XPS) analysis, dynamic contact angle analysis system (DCA) and atomic force microscopy (AFM), respectively. It was found that the content of oxygen element and polar functional groups on fiber surface were all increased obviously after oxygen plasma treatment. The content of oxygen element on surface for untreated F-12 aramid fiber was 11.13%, while it increased to 15.20% after oxygen plasma treatment for 10 min; The content of polar functional groups on surface for untreated F-12 aramid fiber was 28.14%, while it increased to 38.11% after oxygen plasma treatment for 10 min. The polar component (γp) of fiber surface energy increased sharply from 6.82 mN/m to 36.68 mN/m after 10 min plasma treatment, the total surface free energy was increased from 46.26 mN/m to 64.66 mN/m.The results indicated that oxygen plasma treatment had introduced a large amount of reactive functional groups onto the fiber surface, and these groups can form together as covalent bonding to improve the surface wettability and increase the surface energy of fibers. At the same time, oxygen plasma treatment was able to generate a mass of bulges and grooves on F-12 aramid fiber surface, which had an active effect on increasing the chemical bond and mechanical function between fiber and resin and enhancing the interfacial adhesion performance of composite. The fiber surface grooves had been increased with the time prolonging before 10 min while decreased after 10 min, the results maybe relate to partial organic on fiber surface melting. It had an adverse effect on the interfacial adhesion properties of composite. Therefore, the optimum plasma treatment time was between 5 min and 10 min.


2019 ◽  
Vol 11 (14) ◽  
pp. 13319-13325 ◽  
Author(s):  
Hitoshi Tampo ◽  
Shinho Kim ◽  
Takehiko Nagai ◽  
Hajime Shibata ◽  
Shigeru Niki

RSC Advances ◽  
2015 ◽  
Vol 5 (97) ◽  
pp. 79473-79478 ◽  
Author(s):  
Zhen Li ◽  
Qianqian Jiang ◽  
Zhaoling Ma ◽  
Qiuhong Liu ◽  
Zhenjun Wu ◽  
...  

O2 plasma treatment could generate electronegative oxygen functional groups such as –COOH and –OH on the separator to restrain the shuttle effect of polysulfide intermediates in Li–S battery.


2006 ◽  
Vol 253 (4) ◽  
pp. 1861-1865 ◽  
Author(s):  
Uroš Cvelbar ◽  
Boštjan Markoli ◽  
Igor Poberaj ◽  
Anton Zalar ◽  
Ladislav Kosec ◽  
...  

2013 ◽  
Vol 347-350 ◽  
pp. 1535-1539
Author(s):  
Jian Jun Zhou ◽  
Liang Li ◽  
Hai Yan Lu ◽  
Ceng Kong ◽  
Yue Chan Kong ◽  
...  

In this letter, a high breakdown voltage GaN HEMT device fabricated on semi-insulating self-standing GaN substrate is presented. High quality AlGaN/GaN epilayer was grown on self-standing GaN substrate by metal organic chemical vapor deposition. A 0.8μm gate length GaN HEMT device was fabricated with oxygen plasma treatment. By using oxygen plasma treatment, gate forward working voltage is increased, and a breakdown voltage of more than 170V is demonstrated. The measured maximum drain current of the device is larger than 700 mA/mm at 4V gate bias voltage. The maximum transconductance of the device is 162 mS/mm. In addition, high frequency performance of the GaN HEMT device is also obtained. The current gain cutoff frequency and power gain cutoff frequency are 19.7 GHz and 32.8 GHz, respectively. A high fT-LG product of 15.76 GHzμm indicating that homoepitaxy technology is helpful to improve the frequency performance of the device.


RSC Advances ◽  
2014 ◽  
Vol 4 (50) ◽  
pp. 26240-26243 ◽  
Author(s):  
M. Gołda-Cępa ◽  
N. Aminlashgari ◽  
M. Hakkarainen ◽  
K. Engvall ◽  
A. Kotarba

A versatile parylene C coating for biomaterials was fabricated by the mild oxygen plasma treatment and examined by the use of LDI-MS..


Sign in / Sign up

Export Citation Format

Share Document