Fluorescence Band Exchange Narrowing in a Series of Squaraine Oligomers: Energetic vs. Structural Disorder

Author(s):  
Arthur Turkin ◽  
Pavel Malý ◽  
Christoph Lambert

The influence of oligosquaraine chain length on the energies and shape of absorption and emission bands and the exciton coherence length is studied in CHCl3 where the oligomers adopt a...

1965 ◽  
Vol 5 ◽  
pp. 120-130
Author(s):  
T. S. Galkina

It is necessary to have quantitative estimates of the intensity of lines (both absorption and emission) to obtain the physical parameters of the atmosphere of components.Some years ago at the Crimean observatory we began the spectroscopic investigation of close binary systems of the early spectral type with components WR, Of, O, B to try and obtain more quantitative information from the study of the spectra of the components.


1979 ◽  
Vol 46 ◽  
pp. 386-408 ◽  
Author(s):  
G. V. Coyne ◽  
I. S. McLean

AbstractIn recent years the wavelength, dependence of the polarization in a number of Mira variables, semi-regular variables and red supergiants has been measured with resolutions between 0.3 and 300 A over the range 3300 to 11000 A. Variations are seen across molecular absorption bands, especially TiO bands, and across atomic absorption and emission lines, especially the Balmer lines. In most cases one can ignore or it is possible to eliminate the effects due to interstellar polarization, so that one can study the polarization mechanisms operating in the stellar atmosphere and environment. The stars Omicron Ceti. (Mira), V CVn (semi-regular variable) and Mu Cephei (M2 la), in addition to other stars similar to them, will be discussed in some detail.Models to explain the observed polarization consider that the continuum flux is polarized either by electron, molecular and/or grain scattering or by temperature variations and/or geometrical asymmetries over the stellar photosphere. This polarized radiation is affected by atomic and molecular absorption and emission processes at various geometric depths in the stellar atmosphere and envelope. High resolution spectropolarimetry promises, therefore, to be a power-rul tool for studying stratification effects in these stars.


Author(s):  
R.M. Glaeser ◽  
S.B. Hayward

Highly ordered or crystalline biological macromolecules become severely damaged and structurally disordered after a brief electron exposure. Evidence that damage and structural disorder are occurring is clearly given by the fading and eventual disappearance of the specimen's electron diffraction pattern. The fading and disappearance of sharp diffraction spots implies a corresponding disappearance of periodic structural features in the specimen. By the same token, there is a oneto- one correspondence between the disappearance of the crystalline diffraction pattern and the disappearance of reproducible structural information that can be observed in the images of identical unit cells of the object structure. The electron exposures that result in a significant decrease in the diffraction intensity will depend somewhat upon the resolution (Bragg spacing) involved, and can vary considerably with the chemical makeup and composition of the specimen material.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Author(s):  
H. Watanabe ◽  
B. Kabius ◽  
B. Roas ◽  
K. Urban

Recently it was reported that the critical current density(Jc) of YBa2Cu2O7, in the presence of magnetic field, is enhanced by ion irradiation. The enhancement is thought to be due to the pinning of the magnetic flux lines by radiation-induced defects or by structural disorder. The aim of the present study was to understand the fundamental mechanisms of the defect formation in association with the pinning effect in YBa2Cu3O7 by means of high-resolution electron microscopy(HRTEM).The YBa2Cu3O7 specimens were prepared by laser ablation in an insitu process. During deposition, a substrate temperature and oxygen atmosphere were kept at about 1073 K and 0.4 mbar, respectively. In this way high quality epitaxially films can be obtained with the caxis parallel to the <100 > SrTiO3 substrate normal. The specimens were irradiated at a temperature of 77 K with 173 MeV Xe ions up to a dose of 3.0 × 1016 m−2.


2001 ◽  
Vol 120 (5) ◽  
pp. A710-A710
Author(s):  
S LAL ◽  
J MCLAUGHLIN ◽  
O NIAZ ◽  
G DOCKRAY ◽  
A VARRO ◽  
...  

2019 ◽  
Author(s):  
Dennis Bücker ◽  
Annika Sickinger ◽  
Julian D. Ruiz Perez ◽  
Manuel Oestringer ◽  
Stefan Mecking ◽  
...  

Synthetic polymers are mixtures of different length chains, and their chain length and chain conformation is often experimentally characterized by ensemble averages. We demonstrate that Double-Electron-Electron-Resonance (DEER) spectroscopy can reveal the chain length distribution, and chain conformation and flexibility of the individual n-mers in oligo-(9,9-dioctylfluorene) from controlled Suzuki-Miyaura Coupling Polymerization (cSMCP). The required spin-labeled chain ends were introduced efficiently via a TEMPO-substituted initiator and chain terminating agent, respectively, with an in situ catalyst system. Individual precise chain length oligomers as reference materials were obtained by a stepwise approach. Chain length distribution, chain conformation and flexibility can also be accessed within poly(fluorene) nanoparticles.


2020 ◽  
Author(s):  
Vladimir Katev ◽  
Zahari Vinarov ◽  
Slavka S. Tcholakova

Despite the widespread use of lipid excipients in both academic research and oral formulation development, rational selection guidelines are still missing. In the current study, we aimed to establish a link between the molecular structure of commonly used polar lipids and drug solubilization in biorelevant media. We studied the effect of 26 polar lipids of the fatty acid, phospholipid or monoglyceride type on the solubilization of fenofibrate in a two-stage <i>in vitro</i> GI tract model. The main trends were checked also with progesterone and danazol.<br>Based on their fenofibrate solubilization efficiency, the polar lipids can be grouped in 3 main classes. Class 1 substances (n = 5) provide biggest enhancement of drug solubilization (>10-fold) and are composed only by unsaturated compounds. Class 2 materials (n = 10) have an intermediate effect (3-10 fold increase) and are composed primarily (80 %) of saturated compounds. Class 3 materials (n = 11) have very low or no effect on drug solubilization and are entirely composed of saturated compounds.<br>The observed behaviour of the polar lipids was rationalized by using two classical physicochemical parameters: the acyl chain phase transition temperature (<i>T</i><sub>m</sub>) and the critical micellar concentration (CMC). Hence, the superior performance of class 1 polar lipids was explained by the double bonds in their acyl chains, which: (1) significantly decrease <i>T</i><sub>m</sub>, allowing these C18 lipids to form colloidal aggregates and (2) prevent tight packing of the molecules in the aggregates, resulting in bigger volume available for drug solubilization. Long-chain (C18) saturated polar lipids had no significant effect on drug solubilization because their <i>T</i><sub>m</sub> was much higher than the temperature of the experiment (<i>T</i> = 37 C) and, therefore, their association in colloidal aggregates was limited. On the other end of the spectrum, the short chain octanoic acid manifested a high CMC (50 mM), which had to be exceeded in order to enhance drug solubilization. When these two parameters were satisfied (C > CMC, <i>T</i><sub>m</sub> < <i>T</i><sub>exp</sub>), the increase of the polar lipid chain length increased the drug solubilization capacity (similarly to classical surfactants), due to the decreased CMC and bigger volume available for solubilization.<br>The hydrophilic head group also has a dramatic impact on the drug solubilization enhancement, with polar lipids performance decreasing in the order: choline phospholipids > monoglycerides > fatty acids.<br>As both the acyl chain length and the head group type are structural features of the polar lipids, and not of the solubilized drugs, the impact of <i>T</i><sub>m</sub> and CMC on solubilization by polar lipids should hold true for a wide variety of hydrophobic molecules. The obtained mechanistic insights can guide rational drug formulation development and thus support modern drug discovery pipelines.<br>


Sign in / Sign up

Export Citation Format

Share Document