Addressable Graphene Encapsulation of Wet Specimens on a Chip for Optical, Electron, Infrared, and X-ray based Spectromicroscopy Studies

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Christopher Arble ◽  
Hongxuan Guo ◽  
Alessia Matruglio ◽  
Alessandra Gianoncelli ◽  
Lisa Vaccari ◽  
...  
Keyword(s):  
X Ray ◽  

Label-free spectromicroscopy methods offer the capability to examine complex cellular phenomena. Electron and X-ray-based spectromicroscopy methods, though powerful, have been hard to implement with hydrated objects due to the vacuum...

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3048
Author(s):  
Rok Podlipec ◽  
Esther Punzón-Quijorna ◽  
Luka Pirker ◽  
Mitja Kelemen ◽  
Primož Vavpetič ◽  
...  

The metallic-associated adverse local tissue reactions (ALTR) and events accompanying worn-broken implant materials are still poorly understood on the subcellular and molecular level. Current immunohistochemical techniques lack spatial resolution and chemical sensitivity to investigate causal relations between material and biological response on submicron and even nanoscale. In our study, new insights of titanium alloy debris-tissue interaction were revealed by the implementation of label-free high-resolution correlative microscopy approaches. We have successfully characterized its chemical and biological impact on the periprosthetic tissue obtained at revision surgery of a fractured titanium-alloy modular neck of a patient with hip osteoarthritis. We applied a combination of photon, electron and ion beam micro-spectroscopy techniques, including hybrid optical fluorescence and reflectance micro-spectroscopy, scanning electron microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), helium ion microscopy (HIM) and micro-particle-induced X-ray emission (micro-PIXE). Micron-sized wear debris were found as the main cause of the tissue oxidative stress exhibited through lipopigments accumulation in the nearby lysosome. This may explain the indications of chronic inflammation from prior histologic examination. Furthermore, insights on extensive fretting and corrosion of the debris on nm scale and a quantitative measure of significant Al and V release into the tissue together with hydroxyapatite-like layer formation particularly bound to the regions with the highest Al content were revealed. The functional and structural information obtained at molecular and subcellular level contributes to a better understanding of the macroscopic inflammatory processes observed in the tissue level. The established label-free correlative microscopy approach can efficiently be adopted to study any other clinical cases related to ALTR.


2018 ◽  
Vol 71 (3) ◽  
pp. 170 ◽  
Author(s):  
Xuejia Zhan ◽  
Guangzhi Hu ◽  
Thomas Wagberg ◽  
Dongwei Zhang ◽  
Pei Zhou

A novel aptasensor based on a tetracycline (TET) aptamer immobilized by physical adsorption on an ordered mesoporous carbon–Fe3O4 (OMC-Fe3O4)-modified screen-printed electrode surface was successfully fabricated. OMC-Fe3O4 was characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The modification procedure of the aptasensor was characterized by cyclic voltammetry. Interaction between the TET aptamer and target was determined by differential pulse voltammetry. Under optimal conditions, the proposed aptasensor exhibited good electrochemical sensitivity to TET in a concentration range of 5 nM to 10 μM, with a detection limit of 0.8 nM (S/N = 3). This aptasensor exhibited satisfactory specificity, reproducibility, and stability.


2020 ◽  
Vol 14 ◽  
Author(s):  
Hung Tri Tran ◽  
Esther H. R. Tsai ◽  
Amanda J. Lewis ◽  
Tim Moors ◽  
J. G. J. M. Bol ◽  
...  

Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson’s diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.


2016 ◽  
Vol 22 (S3) ◽  
pp. 212-213
Author(s):  
Paul Quinn ◽  
Julia Parker ◽  
Fernando Cach-Nerin ◽  
Dogan Ozakaya ◽  
Judy Kim ◽  
...  
Keyword(s):  
X Ray ◽  

1992 ◽  
Vol 7 (8) ◽  
pp. 2219-2224 ◽  
Author(s):  
N.E. Pingitore ◽  
B.F. Ponce ◽  
M.P. Eastman ◽  
F. Moreno ◽  
C. Podpora

Optical, electron microprobe, and x-ray diffraction analysis of 88 samples of various compositions between Ag2S and Ag2Se synthesized at high temperature in sealed quartz tubing indicates the presence of two solid-solution series in this system at ambient (room) conditions. One series extends from Ag2S to approximately Ag2S0.4Se0.7 and has the Ag2S-III-type structure (monoclinic). The second series ranges from Ag2S0.3Se0.7 to Ag2Se and is characterized by the Ag2Se-II-type structure (orthorhombic). Members of both series, in appropriate proportions, characterize the apparent compositional gap between the two solid solutions. Gradual shifts in the locations of the x-ray diffraction peaks along the compositional gradient of each solid solution revealed an expansion of the d-spacing as the larger Se ion was substituted for S in the Ag2S-III-type structure and a contraction as S was substituted for Se in the Ag2Se-II-type structure. The reported discrete phase, Ag4SSe (aguilarite, orthorhombic), appears to be simply a member of the monoclinic Ag2S-III-type solid solution.


2012 ◽  
Vol 17 (4) ◽  
pp. 469-480 ◽  
Author(s):  
Michael I. Recht ◽  
Vandana Sridhar ◽  
John Badger ◽  
Leslie Hernandez ◽  
Barbara Chie-Leon ◽  
...  

Fragment-based screening has typically relied on X-ray or nuclear magnetic resonance methods to identify low-affinity ligands that bind to therapeutic targets. These techniques are expensive in terms of material and time, so it useful to have a higher throughput method to reliably prescreen a fragment library to identify a subset of compounds for structural analysis. Calorimetry provides a label-free method to assay binding and enzymatic activity that is unaffected by the spectroscopic properties of the sample. Conventional microcalorimetry is hampered by requiring large quantities of reagents and long measurement times. Nanocalorimeters can overcome these limitations of conventional isothermal titration calorimetry. Here we have used enthalpy arrays, which are arrays of nanocalorimeters, to perform an enzyme activity-based fragment screen for competitive inhibitors of phosphodiesterase 4A (PDE4A). Several inhibitors with K I <2 mM were identified and moved to X-ray crystallization trials. Although the co-crystals did not yield high-resolution data, evidence of binding was observed, and the chemical structures of the hits were consistent with motifs of known PDE4 inhibitors. This study shows how array calorimetry can be used as a prescreening method for fragment-based lead discovery with enzyme targets and provides a list of candidate fragments for inhibition of PDE4A.


1976 ◽  
Vol 40 (313) ◽  
pp. 501-511 ◽  
Author(s):  
M.-A. Kashkai ◽  
I. A. Babaev

SummaryA study has been made of a large clinoptilolite deposit in the Lesser Caucasus (Azerbaidzhan SSR). The geological conditions have been examined and a number of samples investigated by optical, electron-microscopic, chemical, X-ray, thermal, and infra-red methods. Based on these investigations and on comparison with previous literature, mineralogical, chemical, and geochemical conclusions are drawn and conditions for clinoptilolite genesis are considered.


2018 ◽  
Vol 5 (6) ◽  
pp. 1870036
Author(s):  
Anna Khimchenko ◽  
Christos Bikis ◽  
Alexandra Pacureanu ◽  
Simone E. Hieber ◽  
Peter Thalmann ◽  
...  

2017 ◽  
Vol 61 (5) ◽  
pp. 465-473 ◽  
Author(s):  
Daniel Shiu-Hin Chan ◽  
Andrew J. Whitehouse ◽  
Anthony G. Coyne ◽  
Chris Abell

Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening.


Sign in / Sign up

Export Citation Format

Share Document