scholarly journals Sulfated poly-amido-saccharides (sulPASs) are anticoagulants in vitro and in vivo

2021 ◽  
Vol 12 (38) ◽  
pp. 12719-12725
Author(s):  
Maria Varghese ◽  
Rae S. Rokosh ◽  
Carolyn A. Haller ◽  
Stacy L. Chin ◽  
Jiaxuan Chen ◽  
...  

Heparin mimicking sulfated poly-amido-saccharides (sulPASs) are anticoagulants resistant to heparanases and reversed by protamine sulfate. In an in vivo murine model, sulPASs extend clotting time without the increased risk of bleeding.

2021 ◽  
Author(s):  
Xing Wei ◽  
Andrew Chia Hao Chang ◽  
Haishuang Chang ◽  
Shan Xu ◽  
Yilin Xue ◽  
...  

Abstract Background: Diabetic cardiomyopathy (DCM) is a complex multifaceted disease responsible for elevated hospitalization and mortality in patients with diabetes mellitus (DM). DCM patients exhibit subclinical diastolic dysfunction, progression towards systolic impairment, and abnormal electrophysiology. Hypoglycemia events that occur spontaneously or due to excess insulin administration threaten the lives of DM patients – with the increased risk of sudden death. However, the molecular underpinnings of hypoglycemia-aggravated DCM remain to be elucidated. Methods and Results: Here we used the established streptozotocin-induced type 1 diabetic cardiomyopathy (T1 DCM) murine model to investigate how hypoglycemia aggravates DCM progression. We showed that chronic hyper- or hypoglycemic challenges dampened cardiac diastolic function in vivo as well as myocardial contractility and calcium handling in isolated cardiomyocytes. Similar contractile defects were recapitulated using neonatal mouse ventricular myocytes (NMVMs) under glucose fluctuation challenges. Using immunoprecipitation mass spectrometry, we identified and validated that hypoglycemia challenge activates the MEK/ERK and PI3K/Akt pathways which results in Cx43 phosphorylation by Src protein in cardiomyocytes. Cx43 dissociation and accumulation at mitochondrial inner membrane was confirmed both in human and murine cardiomyocytes. To determine causality, we overexpressed a mitochondrial targeting Cx43 (mtCx43) using AAV2. At normal blood glucose levels, mtCx43 overexpression recapitulated cardiomyocytes contractile deficiencies, cardiac diastolic dysfunction as well as aberrant electrophysiology both in vitro as well as in vivo. Conclusions: Hypoglycemia challenges results in the accumulation of mtCx43 through the MEK/ERK/Src and PI3K/Akt/Src pathways. We provide evidence that Cx43 mislocalization is present in diabetes mellitus patient hearts, STZ-induced DCM murine model, and glucose fluctuation challenged NMVMs. Mechanistically, we demonstrated that mtCx43 is responsible for inducing aberrant contraction and disrupts electrophysiology in cardiomyocytes and our results support targeting of mtCx43 in treating DCM. Translational perspective: Severe hypoglycemia drives cardiac dysfunction and aggressive ventricular arrhythmias in patients with DCM that leads to sudden cardiac death. Here we demonstrate that Cx43 mislocalization to mitochondria occurs upon hypoglycemic challenge and mtCx43 accumulation is responsible for cardiac diastolic dysfunction, cardiomyocyte contractile dysfunction, and aberrant electrophysiology in vivo. Our findings give support for therapeutic targeting of MEK/ERK/Src and PI3K/Akt/Src pathways to prevent mtCx43-driven DCM.


1990 ◽  
Vol 63 (02) ◽  
pp. 220-223 ◽  
Author(s):  
J Hauptmann ◽  
B Kaiser ◽  
G Nowak ◽  
J Stürzebecher ◽  
F Markwardt

SummaryThe anticoagulant effect of selected synthetic inhibitors of thrombin and factor Xa was studied in vitro in commonly used clotting assays. The concentrations of the compounds doubling the clotting time in the various assays were mainly dependent on their thrombin inhibitory activity. Factor Xa inhibitors were somewhat more effective in prolonging the prothrombin time compared to the activated partial thromboplastin time, whereas the opposite was true of thrombin inhibitors.In vivo, in a venous stasis thrombosis model and a thromboplastin-induced microthrombosis model in rats the thrombin inhibitors were effective antithrombotically whereas factor Xa inhibitors of numerically similar IQ value for the respective enzyme were not effective at equimolar dosageThe results are discussed in the light of the different prelequisiles and conditions for inhibition of thrombin and factor Xa in the course of blood clotting.


1986 ◽  
Vol 56 (03) ◽  
pp. 318-322 ◽  
Author(s):  
V Diness ◽  
P B Østergaard

SummaryThe neutralization of a low molecular weight heparin (LHN-1) and conventional heparin (CH) by protamine sulfate has been studied in vitro and in vivo. In vitro, the APTT activity of CH was completely neutralized in parallel with the anti-Xa activity. The APTT activity of LHN-1 was almost completely neutralized in a way similar to the APTT activity of CH, whereas the anti-Xa activity of LHN-1 was only partially neutralized.In vivo, CH 3 mg/kg and LHN-1 7.2 mg/kg was given intravenously in rats. The APTT and anti-Xa activities, after neutralization by protamine sulfate in vivo, were similar to the results in vitro. In CH treated rats no haemorrhagic effect in the rat tail bleeding test and no antithrombotic effect in the rat stasis model was found at a protamine sulfate to heparin ratio of about 1, which neutralized APTT and anti-Xa activities. In LHN-1 treated rats the haemorrhagic effect was neutralized when APTT was close to normal whereas higher doses of protamine sulfate were required for neutralization of the antithrombotic effect. This probably reflects the fact that in most experimental models higher doses of heparin are needed to induce bleeding than to prevent thrombus formation. Our results demonstrate that even if complete neutralization of APTT and anti-Xa activities were not seen in LHN-1 treated rats, the in vivo effects of LHN-1 could be neutralized as efficiently as those of conventional heparin. The large fall in blood pressure caused by high doses of protamine sulfate alone was prevented by the prior injection of LHN-1.


2021 ◽  
Vol 22 (12) ◽  
pp. 6196
Author(s):  
Anna Pieniazek ◽  
Joanna Bernasinska-Slomczewska ◽  
Lukasz Gwozdzinski

The presence of toxins is believed to be a major factor in the development of uremia in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Uremic toxins have been divided into 3 groups: small substances dissolved in water, medium molecules: peptides and low molecular weight proteins, and protein-bound toxins. One of the earliest known toxins is urea, the concentration of which was considered negligible in CKD patients. However, subsequent studies have shown that it can lead to increased production of reactive oxygen species (ROS), and induce insulin resistance in vitro and in vivo, as well as cause carbamylation of proteins, peptides, and amino acids. Other uremic toxins and their participation in the damage caused by oxidative stress to biological material are also presented. Macromolecules and molecules modified as a result of carbamylation, oxidative stress, and their adducts with uremic toxins, may lead to cardiovascular diseases, and increased risk of mortality in patients with CKD.


2021 ◽  
Vol 14 (7) ◽  
pp. 644
Author(s):  
Cintya Perdomo ◽  
Elena Aguilera ◽  
Ileana Corvo ◽  
Paula Faral-Tello ◽  
Elva Serna ◽  
...  

The trypanosomatid parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania are the causative agents of human African trypanosomiasis, Chagas Disease and Leishmaniasis, respectively. These infections primarily affect poor, rural communities in the developing world, and are responsible for trapping sufferers and their families in a disease/poverty cycle. The development of new chemotherapies is a priority given that existing drug treatments are problematic. In our search for novel anti-trypanosomatid agents, we assess the growth-inhibitory properties of >450 compounds from in-house and/or “Pathogen Box” (PBox) libraries against L. infantum, L. amazonensis, L.braziliensis, T. cruzi and T. brucei and evaluate the toxicities of the most promising agents towards murine macrophages. Screens using the in-house series identified 17 structures with activity against and selective toward Leishmania: Compounds displayed 50% inhibitory concentrations between 0.09 and 25 μM and had selectivity index values >10. For the PBox library, ~20% of chemicals exhibited anti-parasitic properties including five structures whose activity against L. infantum had not been reported before. These five compounds displayed no toxicity towards murine macrophages over the range tested with three being active in an in vivo murine model of the cutaneous disease, with 100% survival of infected animals. Additionally, the oral combination of three of them in the in vivo Chagas disease murine model demonstrated full control of the parasitemia. Interestingly, phenotyping revealed that the reference strain responds differently to the five PBox-derived chemicals relative to parasites isolated from a dog. Together, our data identified one drug candidate that displays activity against Leishmania and other Trypanosomatidae in vitro and in vivo, while exhibiting low toxicity to cultured mammalian cells and low in vivo acute toxicity.


2021 ◽  
Vol 22 (9) ◽  
pp. 4670
Author(s):  
Cinzia Buccoliero ◽  
Manuela Dicarlo ◽  
Patrizia Pignataro ◽  
Francesco Gaccione ◽  
Silvia Colucci ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.


2000 ◽  
Vol 44 (8) ◽  
pp. 2081-2085 ◽  
Author(s):  
Beth A. Arthington-Skaggs ◽  
David W. Warnock ◽  
Christine J. Morrison

ABSTRACT MIC end point determination for the most commonly prescribed azole antifungal drug, fluconazole, can be complicated by “trailing” growth of the organism during susceptibility testing by the National Committee for Clinical Laboratory Standards approved M27-A broth macrodilution method and its modified broth microdilution format. To address this problem, we previously developed the sterol quantitation method (SQM) for in vitro determination of fluconazole susceptibility, which measures cellular ergosterol content rather than growth inhibition after exposure to fluconazole. To determine if SQM MICs of fluconazole correlated better with in vivo outcome than M27-A MICs, we used a murine model of invasive candidiasis and analyzed the capacity of fluconazole to treat infections caused by C. albicansisolates which were trailers (M27-A MICs at 24 and 48 h, ≤1.0 and ≥64 μg/ml, respectively; SQM MIC, ≤1.0 μg/ml), as well as those which were fluconazole sensitive (M27-A and SQM MIC, ≤1.0 μg/ml) and fluconazole resistant (M27-A MIC, ≥64 μg/ml; SQM MIC, 54 μg/ml). Compared with the untreated controls, fluconazole therapy increased the survival of mice infected with a sensitive isolate and both trailing isolates but did not increase the survival of mice infected with a resistant isolate. These results indicate that the SQM is more predictive of in vivo outcome than the M27-A method for isolates that give unclear MIC end points due to trailing growth in fluconazole.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi213-vi213
Author(s):  
Nadim Tawil ◽  
Rayhaan Bassawon ◽  
Brian Meehan ◽  
Laura Montermini ◽  
Ali Nehme ◽  
...  

Abstract BACKGROUND Vascular anomalies, including thrombosis, are a hallmark of glioblastoma (GBM) and an aftermath of dysregulated cancer cell genome and epigenome. Up-regulation of podoplanin (PDPN) by cancer cells has recently been linked to an increased risk of venous thromboembolism in glioblastoma patients. Thus, regulation of this platelet activating protein by transforming events and release from cancer cells is of considerable interest. AIMS I. Investigate the pattern of PDPN expression and characterize PDPN-expressing cellular populations in GBM. II. Evaluate the contribution of oncogenic drivers to PDPN expression in GBM models. III. Investigate the potential involvement of extracellular vesicles (EVs) as a mechanism for systemic dissemination of PDPN and tissue factor (TF). IV. Examine the role of PDPN in intratumoral and systemic thrombosis. METHODS Bioinformatics (single-cell and bulk transcriptome data mining), GBM cell lines and stem cell lines, xenograft models in mice, ELISA assays for PDPN and TF, platelet (PF4) and clotting activation markers (D-dimer), EV electron microscopy, density gradient fractionation, and nano-flow cytometry. RESULTS PDPN is expressed by distinct glioblastoma cell subpopulations (mesenchymal) and downregulated by oncogenic mutations of EGFR and IDH1 genes, via changes in chromatin modifications (EZH2) and DNA methylation, respectively. GBM cells exteriorize PDPN and/or TF as cargo of exosome-like EVs shed both in vitro and in vivo. Injection of glioma PDPN-EVs activates platelets. Increase of platelet activation (PF4) or coagulation markers (D-dimer) occurs in mice harboring the corresponding glioma xenografts expressing PDPN or TF, respectively. Co-expression of PDPN and TF by GBM cells cooperatively increases tumor microthrombosis. CONCLUSION Distinct cellular subsets drive multiple facets of GBM-associated thrombosis and may represent targets for diagnosis and intervention. We suggest that the preponderance of PDPN expression as a risk factor in glioblastoma and the involvement of platelets may merit investigating anti-platelets for potential inclusion in thrombosis management in GBM.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Ishita Chatterjee ◽  
Kishore K Wary

Rationale: A recent genome-wide association study (GWAS) has linked a frequently occurring variation in the LPP3 (also known as PPAP2b) loci to increased risk of coronary heart disease (CAD). However, the in vivo function of LPP3 in vascular endothelial cell is incompletely understood. Goal: To address the endothelial cell (EC) specific function of Lpp3 in mice. Results: Tie-2/Cre mediated Lpp3 deletion did not affect normal vasculogenesis in early embryonic development, in contrast, in late embryonic stages it led to impaired angiogenesis associated with hemorrhage, edema and late embryonic lethal phenotype. Immunohistochemical staining followed by microscopic analyses of mutant embryos revealed reduced fibronectin and VE-cadherin expression throughout different vascular bed, and increased apoptosis in CD31+ vascular structures. Transmission electron microscopy (TEM) showed the presence of apoptotic endothelial cells and disruption of adherens junctions in mutant embryos. LPP3-knockdown in vitro showed an increase in p53 and p21 protein levels, with concomitant decrease in cell proliferation. LPP3-knockdown also decreased transendothelial electrical resistance (TER), interestingly re-expression of ß-catenin cDNA into LPP3-depleted endothelial cells partially restored the effect of loss of LPP3. Conclusion: These results suggest the ability of LPP3 to regulate survival and apoptotic activities of endothelial cells during patho/physiological angiogenesis.


2018 ◽  
Vol 19 (11) ◽  
pp. 3606 ◽  
Author(s):  
Majda Batool ◽  
Affifa Tajammal ◽  
Firdous Farhat ◽  
Francis Verpoort ◽  
Zafar Khattak ◽  
...  

A new series of 1,3,4-oxadiazoles derivatives was synthesized, characterized, and evaluated for their in vitro and in vivo anti-thrombotic activity. Compounds (3a–3i) exhibited significant clot lysis with respect to reference drug streptokinase (30,000 IU), and enhanced clotting time (CT) values (130–342 s) than heparin (110 s). High affinity towards 1NFY with greater docking score was observed for the compounds (3a, 3i, 3e, 3d, and 3h) than the control ligand RPR200095. In addition, impressive inhibitory potential against factor Xa (F-Xa) was observed with higher docking scores (5612–6270) with Atomic Contact Energy (ACE) values (−189.68 to −352.28 kcal/mol) than the control ligand RPR200095 (Docking score 5192; ACE −197.81 kcal/mol). In vitro, in vivo, and in silico results proposed that these newly synthesized compounds might be used as anticoagulant agents.


Sign in / Sign up

Export Citation Format

Share Document