scholarly journals HSA-Lys-161 Covalent Bound Fluorescent Dye for In Vivo Blood Drug Dynamic Imaging and Tumor Mapping

2021 ◽  
Author(s):  
yongkang yue ◽  
tingting zhao ◽  
Yuting Wang ◽  
Kaiqing Ma ◽  
Xingkang Wu ◽  
...  

The specific combination of human serum albumin and fluorescent dye will endow superior performance to the coupled fluorescent platform for in vivo fluorescence labeling. In this study, we found that...

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3321
Author(s):  
Katarzyna Kurpet ◽  
Rafał Głowacki ◽  
Grażyna Chwatko

Biothiols are extremely powerful antioxidants that protect cells against the effects of oxidative stress. They are also considered relevant disease biomarkers, specifically risk factors for cardiovascular disease. In this paper, a new procedure for the simultaneous determination of human serum albumin and low-molecular-weight thiols in plasma is described. The method is based on the pre-column derivatization of analytes with a thiol-specific fluorescence labeling reagent, monobromobimane, followed by separation and quantification through reversed-phase high-performance liquid chromatography with fluorescence detection (excitation, 378 nm; emission, 492 nm). Prior to the derivatization step, the oxidized thiols are converted to their reduced forms by reductive cleavage with sodium borohydride. Linearity in the detector response for total thiols was observed in the following ranges: 1.76–30.0 mg mL−1 for human serum albumin, 0.29–5.0 nmol mL−1 for α-lipoic acid, 1.16–35 nmol mL−1 for glutathione, 9.83–450.0 nmol mL−1 for cysteine, 0.55–40.0 nmol mL−1 for homocysteine, 0.34–50.0 nmol mL−1 for N-acetyl-L-cysteine, and 1.45–45.0 nmol mL−1 for cysteinylglycine. Recovery values of 85.16–119.48% were recorded for all the analytes. The developed method is sensitive, repeatable, and linear within the expected ranges of total thiols. The devised procedure can be applied to plasma samples to monitor biochemical processes in various pathophysiological states.


2020 ◽  
Vol 328 ◽  
pp. 339-349 ◽  
Author(s):  
Ayasha Patel ◽  
Natalja Redinger ◽  
Adrian Richter ◽  
Arcadia Woods ◽  
Paul Robert Neumann ◽  
...  

Nanomedicine ◽  
2019 ◽  
Vol 14 (16) ◽  
pp. 2169-2187 ◽  
Author(s):  
Ting Gong ◽  
Pei Zhang ◽  
Caifeng Deng ◽  
Yu Xiao ◽  
Tao Gong ◽  
...  

Aim: We aimed to construct human serum albumin-Kolliphor® HS 15 nanoparticles (HSA-HS15 NPs) to overcome the limitations in targeted therapy for rheumatoid arthritis (RA) and enhance the safety of drug-loaded HSA NPs. Methodology: Celastrol (CLT)-loaded HSA-HS15 NPs were prepared and the properties were adequately investigated; the treatment effect were evaluated in RA rats; in vitro and in vivo studies were performed to explain the mechanism. Results: CLT-HSA-HS15 NPs had remarkable treatment ability and enhanced safety in the treatment of RA compared with free CLT and CLT-HSA NPs. Conclusion: HSA-HS15 NPs could be a safe and efficient therapeutic strategy for the treatment of RA, because of the inflammatory targeting ability of albumin, the added HS15 and ELVIS effect (extravasation through leaky vasculature followed by inflammatory cell-mediated sequestration) of nanoparticles.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 97 ◽  
Author(s):  
Gábor Katona ◽  
György Tibor Balogh ◽  
Gergő Dargó ◽  
Róbert Gáspár ◽  
Árpád Márki ◽  
...  

The aim of this study was to optimize the formulation of meloxicam (MEL)-containing human serum albumin (HSA) nanoparticles for nose-to-brain via a quality by design (QbD) approach. Liquid and dried formulations of nanoparticles containing Tween 80 and without the surfactant were investigated. Various properties, such as the Z-average, zeta potential, encapsulation efficacy (EE), conjugation of MEL and HSA, physical stability, in vitro dissolution, in vitro permeability, and in vivo plasma and brain distribution of MEL were characterized. From a stability point of view, a solid product (Mel-HSA-Tween) is recommended for further development since it met the desired critical parameters (176 ± 0.3 nm Z-average, 0.205 ± 0.01 PdI, −14.1 ± 0.7 mV zeta potential) after 6 months of storage. In vitro examination showed a significantly increased drug dissolution and permeability of MEL-containing nanoparticles, especially in the case of applying Tween 80. The in vivo studies confirmed both the trans-epithelial and axonal transport of nanoparticles, and a significantly higher cerebral concentration of MEL was detected with nose-to-brain delivery, in comparison with intravenous or per os administration. These results indicate intranasal the administration of optimized MEL-containing HSA formulations as a potentially applicable “value-added” product for the treatment of neuroinflammation.


2019 ◽  
Vol 37 (5) ◽  
pp. 994-1005 ◽  
Author(s):  
Otávio Augusto Chaves ◽  
Isabela S. de Castro ◽  
Carla Marins Goulart ◽  
Myrtes S. S. Bellieny ◽  
José Carlos Netto-Ferreira ◽  
...  

2016 ◽  
Vol 13 (2) ◽  
pp. 579-586 ◽  
Author(s):  
Fang Wu ◽  
Yizhi Liu ◽  
Jian Li ◽  
Lei Hou ◽  
Fuxi Lei ◽  
...  

2012 ◽  
Vol 431 (1-2) ◽  
pp. 183-189 ◽  
Author(s):  
Azade Taheri ◽  
Rassoul Dinarvand ◽  
Fatemeh Ahadi ◽  
Mohammad Reza Khorramizadeh ◽  
Fatemeh Atyabi

Sign in / Sign up

Export Citation Format

Share Document