Exceptional lithium diffusion through porous aromatic framework (PAF) interlayers delivers high capacity and long-life lithium–sulfur batteries

Author(s):  
Ehsan Ghasemiestahbanati ◽  
Areeb Shehzad ◽  
Kristina Konstas ◽  
Caitlin J. Setter ◽  
Luke A. O'Dell ◽  
...  

Sulfonated porous aromatic frameworks (SPAFs) accelerate Li-ion diffusion while retarding the polysulfide shuttle effect in Li–S batteries. This leads to high residual capacity above 1000 mA h g−1 and coulombic efficiency (>99.5%) after 500 cycles.

MRS Advances ◽  
2018 ◽  
Vol 3 (60) ◽  
pp. 3513-3518 ◽  
Author(s):  
Taner Zerrin ◽  
Mihri Ozkan ◽  
Cengiz S. Ozkan

ABSTRACTIncreasing the operation voltage of LiCoO2 (LCO) is a direct way to enhance the energy density of the Li-ion batteries. However, at high voltages, the cycling stability degrades very fast due to the irreversible changes in the electrode structure, and formation of an unstable solid electrolyte interface layer. In this work, Ag thin film was prepared on commercial LCO cathode by using magnetron sputtering technique. Ag coated electrode enabled an improved electrochemical performance with a better cycling capability. After 100 cycles, Ag coated LCO delivers a discharge capacity of 106.3 mAh g-1 within 3 - 4.5 V at C/5, which is increased by 45 % compared to that of the uncoated LCO. Coating the electrode surface with Ag thin film also delivered an improved Coulombic efficiency, which is believed to be an indication of suppressed parasitic reactions at the electrode interface. This work may lead to new methods on surface modifications of LCO and other cathode materials to achieve high-capacity Li-ion batteries for high-voltage operations.


2020 ◽  
Vol 8 (35) ◽  
pp. 18132-18142 ◽  
Author(s):  
Tahar Azib ◽  
Nicolas Bibent ◽  
Michel Latroche ◽  
Florent Fischer ◽  
Jean-Claude Jumas ◽  
...  

High-capacity Si-based anodes with good coulombic efficiency and long-cycle life are achieved by embedding silicon nanoparticles in dual Ni3Sn4/Ni3Sn2 active/inactive intermetallic matrix.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mengjiao Shi ◽  
Su Zhang ◽  
Yuting Jiang ◽  
Zimu Jiang ◽  
Longhai Zhang ◽  
...  

AbstractThe development of lithium–sulfur batteries (LSBs) is restricted by their poor cycle stability and rate performance due to the low conductivity of sulfur and severe shuttle effect. Herein, an N, O co-doped graphene layered block (NOGB) with many dents on the graphene sheets is designed as effective sulfur host for high-performance LSBs. The sulfur platelets are physically confined into the dents and closely contacted with the graphene scaffold, ensuring structural stability and high conductivity. The highly doped N and O atoms can prevent the shuttle effect of sulfur species by strong chemical adsorption. Moreover, the micropores on the graphene sheets enable fast Li+ transport through the blocks. As a result, the obtained NOGB/S composite with 76 wt% sulfur content shows a high capacity of 1413 mAh g−1 at 0.1 C, good rate performance of 433 mAh g−1 at 10 C, and remarkable stability with 526 mAh g−1 at after 1000 cycles at 1 C (average decay rate: 0.038% per cycle). Our design provides a comprehensive route for simultaneously improving the conductivity, ion transport kinetics, and preventing the shuttle effect in LSBs.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2267
Author(s):  
Haisheng Han ◽  
Tong Wang ◽  
Yongguang Zhang ◽  
Arailym Nurpeissova ◽  
Zhumabay Bakenov

A three-dimensionally ordered macroporous ZnO (3DOM ZnO) framework was synthesized by a template method to serve as a sulfur host for lithium–sulfur batteries. The unique 3DOM structure along with an increased active surface area promotes faster and better electrolyte penetration accelerating ion/mass transfer. Moreover, ZnO as a polar metal oxide has a strong adsorption capacity for polysulfides, which makes the 3DOM ZnO framework an ideal immobilization agent and catalyst to inhibit the polysulfides shuttle effect and promote the redox reactions kinetics. As a result of the stated advantages, the S/3DOM ZnO composite delivered a high initial capacity of 1110 mAh g−1 and maintained a capacity of 991 mAh g−1 after 100 cycles at 0.2 C as a cathode in a lithium–sulfur battery. Even at a high C-rate of 3 C, the S/3DOM ZnO composite still provided a high capacity of 651 mAh g−1, as well as a high areal capacity (4.47 mAh cm−2) under high loading (5 mg cm−2).


2020 ◽  
Vol 49 (1) ◽  
pp. 79-88 ◽  
Author(s):  
Peipei Zhu ◽  
Xiya Yang ◽  
Xiao Li ◽  
Ning Sheng ◽  
Haifeng Zhang ◽  
...  

A crystalline POM@MOF material with high Li-ion storage capacity with surface uncoordinated N atoms (defect sites) is reported. The Li-ion diffusion sites are confirmed via ex situ XPS and off-line XRD measurements.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2851 ◽  
Author(s):  
Navaratnarajah Kuganathan ◽  
Sashikesh Ganeshalingam ◽  
Alexander Chroneos

In this study, force field-based simulations are employed to examine the defects in Li-ion diffusion pathways together with activation energies and a solution of dopants in Li2Ti6O13. The lowest defect energy process is found to be the Li Frenkel (0.66 eV/defect), inferring that this defect process is most likely to occur. This study further identifies that cation exchange (Li–Ti) disorder is the second lowest defect energy process. Long-range diffusion of Li-ion is observed in the bc-plane with activation energy of 0.25 eV, inferring that Li ions move fast in this material. The most promising trivalent dopant at the Ti site is Co3+, which would create more Li interstitials in the lattice required for high capacity. The favorable isovalent dopant is the Ge4+ at the Ti site, which may alter the mechanical property of this material. The electronic structures of the favorable dopants are analyzed using density functional theory (DFT) calculations.


2017 ◽  
Vol 5 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Weijie Liu ◽  
Qiang Shi ◽  
Qunting Qu ◽  
Tian Gao ◽  
Guobin Zhu ◽  
...  

Incorporation of the Li7La3Zr2O12 superionic conductor into LiNi0.5Mn1.5O4 greatly improves the intrinsic lithium diffusion rate and rate capability.


Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2025-2032
Author(s):  
Fan Zhang ◽  
Yunlei Zhou ◽  
Yi Zhang ◽  
Dongchan Li ◽  
Zhichao Huang

AbstractThe design of sulfur hosts with polar, sulfurphilic, and conductive network is critical to lithium-sulfur (Li-S) batteries whose potential applications are greatly limited by the lithium polysulfide shuttle effect. Mxenes, possessing layered-stacked structures and high electrical conductivities, have a great potential in sulfur hosts. Herein, sulfur nanoparticles uniformly decorated on titanium carbide Mxene (S@Ti3C2Tx Mxene) are synthesized via a hydrothermal method and then utilized as a cathode for lithium-sulfur batteries. This unique architecture could accommodate sulfur nanoparticles expansion during cycling, suppress the shuttling of lithium polysulfide, and enhance electronical conductivity. Consequently, the S@Mxene with a high areal sulfur loading (∼4.0 mg cm−2) exhibits a high capacity (1477.2 mAh g−1) and a low capacity loss per cycle of 0.18% after 100 cycles at 0.2 C. This work may shed lights on the development of high performance sulfur-based cathode materials for Li-S batteries.


2020 ◽  
Author(s):  
Zhong Ma ◽  
Zhijun Zuo ◽  
Yuning Li

Abstract The “shuttle effect” of soluble lithium polysulfides (LPS), which causes rapid capacity fading, remains a lingering issue for lithium-sulfur batteries (LSBs). Herein, we report a new type of reactive molecule-based (or molecular) LPS trapper, zinc acetate-diethanolamine (Zn(OAc)2·DEA), which demonstrated a molecular efficiency of 1.8 for LPS trapping, approaching its theoretical limit of 2. This is the highest trapping capability among all reported LPS trappers. During discharge the trapped polysulfides are much more thermodynamically favored for reduction compared to the non-trapped ones, while during charge the complex Zn(SLi)2·DEA formed in the previous discharging process can be more easily oxidized due to its lower energy barrier in comparison to Li2S, indicating the catalytic effects of Zn2+·DEA on the redox of sulfur species. Zn(OAc)2·DEA is also an excellent binder owing to its multiple intermolecular hydrogen bonds. LSBs using Zn(OAc)2·DEA as a LPS trapper, a binder, and a redox catalyst exhibited excellent long-term cycling stability (with a capacity retention of 85% after 1000 cycles at a rate of 0.5 C) and enhanced rate performance. The work demonstrated the potential of this novel type of multifunctional metal complex-based reactive molecular LPS trappers for high capacity and stable LSBs.


2020 ◽  
Vol 4 (2) ◽  
pp. 42 ◽  
Author(s):  
Hamza Dunya ◽  
Maziar Ashuri ◽  
Dana Alramahi ◽  
Zheng Yue ◽  
Kamil Kucuk ◽  
...  

The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.


Sign in / Sign up

Export Citation Format

Share Document